Nils Philipp Walter
I am a first year Ph.D. student at CISPA Helmholtz Center for Information Security, supervised by Jilles Vreeken. I am broadly interested in robust and explainable machine learning for large-scale real-world applications. In my Ph.D, I intend to develop new approaches that are at the same time descriptive and predictive. That is the models not only offer predictive capabilities but also facilitate practitioners to gain deeper insights into the problems they are addressing.
Before joining CISPA, I was a research assistant in the goup of Bernt Schiele at the Max-Planck-Institut for Informatics, supervised by David Stutz . My research focused on adversarial and out-of-distribution robustness of Quantized Neural Networks. I also worked on the influence of Batch Normalization on the vulnerability and generalization capabilities of neural networks.
news
Jun '24 | Happy to announce that our paper Learning Exceptional Subgroups by End-to-End Maximizing KL-divergence received a spotlight at ICML 24! 🎉 |
---|---|
May '24 | Preprint of our paper The Uncanny Valley: Exploring Adversarial Robustness from a Flatness Perspective is available on arXiv. |
May '24 | Our paper Learning Exceptional Subgroups by End-to-End Maximizing KL-divergence got accepted to ICML 24! |
Feb '24 | Preprint of our paper Learning Exceptional Subgroups by End-to-End Maximizing KL-divergence is available on arXiv. |
Feb '24 | Attending AAAI 2024 in Vancouver, Canada. |
Dec '23 | Attended Kickoff-Retreat of the RTG for Neuroexplicit Models at Schloss Dagstuhl. |
Dec '23 | Our paper Finding Interpretable Class-Specific Patterns through Efficient Neural Search got accepted to AAAI 24! |
Nov '23 | Glad to be accepted to the Machine Learning Summer School 2024 in Okinawa! |
Jun '23 | Started my Ph.D. at CISPA Helmholtz Center for Information Security. |