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Common questions in biology

What is the difference between cancerous and benign tissue?
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Disclaimer: | am

Common questions in physics am
computer scientist

What materials have exceptional conductivity?

== Odd #Atoms A #Atoms > 8

= Odd #Atoms A % 4-bonds < 0.6 A % 2-bonds < 0.9

= Even #Atoms A 3-D Planarity A Gyration < 1.00

== Even #Atoms A % 0-bonds < 0.01 A 2-bonds > 0.43
A Gyration < 1.00 A % 1 bond < 0.3
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Common questions in explainability

What are commmon failure modes and biases?

Hard Acc: 8%

cub + climbing + tree
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Common Objects in Context
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Common questions in interpretability

What internal reasoning influences predictions?
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Common questions in ML

Hard Acc: 8%

cub + climbing + tree

photo of a bear cub climbing a tree
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Understanding genetic data

=

Breast Cancer Data (BRCA) Class-specific pattern:
« (Binarized) sequences of tissue samples 1. Occurs more often in class k
* Labeled with types of BRCA 2. Is most predictive for class k
* Very high-dimensional, low #samples
o Features F Y
o r
éRCA Gene 2 o r
<BRCA Gene 1 ol -
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Goal: Find class-specific interactions of genes



DIFFNAPS - In a nutshell

Main Idea: Compression + Classification = Class-specific pattern

Autoencoder Forward Pass
‘fQ """" v b o Q \ .. Binaryinput x |
_O 2. Binarize weight matrix W}
1< > 3. Compute hidden activation z
2= L(WEx),
' \O Oz where Ag is a binary activation function.
PatternLayer _____ .‘- -:“::::::::i::i 4, Compute reconstruction
e O | =1 % = Ap(W5)'2)
—/Activeedge  @Activeneuron [i NS J 5. Compute classification y
Classifier ) = SoftmaX(WC 2)

Jointly optimize reconstruction and classification accuracy



DIFFNAPS - Extract patterns

Autoencoder
s il s . .
| i Continuous Discrete
(O we be oy ()
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Pattern Layer AN ¢ N
Inactive edge () Inactive neuron i > i
— Activeedge @ Active neuron || i Class-specific patterns: P! = {{2,3}} resp. P? = {{1,4}}

Classifier



DIFFNAPS — Real World Data

« Cardio (m = 45): Patient data annotated with heart disease [8]
« Disease (m = 131) : Various symptoms annotated with disease [9]

« BRCA-S (m = 20k): ncRNA annotated with cancer type [10] 2 Found biologically relevant patterns!
« Genomes (m = 225k): DNA annotated with ethnicity [17]

—— DIFFNAPS — CART — CLASSY — SPUMANTE PREMISE
Cardio Disease BRCA-S Genomes
i =
g 08 08 — 08 o O°
0.6 e 20 s 0.6
g = 0.6 = 0.6 : \ i
5 04 g 0.4 > 0.4 | EREREN EENAY 5 0.4
0.2 0.2 0.2 0.2
AL AR L R L R S — LSRRI AR LA Laas ksl
0 0.20.40.60.8 1 0 0.20.40.60.8 1 0 0.20.40.60.8 1 00.20.40.60.8 1
Specificity Specificity Specificity Specificity
N J N J
Y Y
On par for low dimensions Substantially better for high dimensions

Ref. [12,13, 14, 15]



Discovering exceptional subgroups

Census Data
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Task - Subgroup Discovery:
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1. Find exceptional subgroups

2. With an interpretable description

“Female & Low Education”
= “Male & White & Age > 38"
= “Male & Educated & Age > 30”

T

50k 100k 150k 200k 250k 300k
Y : Wages in $1000
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SYFLOW - In a nutshell

Subgroup Discovery

1. Dependent on Pre-Discretization

2. Strong assumptions on the
target distribution

3. Combinatorial optimization

1. Learn predicates end-to-end
- Accurate Discretization

2. Use Normalizing Flows (NFs)
- No assumptions

3. Continous optimization
- Highly scalable

max KL(Pys=1 |

)

4---------

Overall

Subgroup |,
Py|s=1
Neural Rule
Layer s
o
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Ref. [16]
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SYFLow - Neural Rule Layer |

Goal: Find an crisp interpretable description
o(x) = ~Smoker N 44 < Age < 64

Ingredients:
1.  Differentiable binning predicate
e%(2azi—o¢i)

A . . . t —
7'('(33@,0{@,,8@, ) e%xi+6%(2xi—ai)_|_6%(3$z‘—04z‘_5i)

« Differentiable analog of:

1 it <z < B
0 otherwise

m(zs; o4, Bi) = {

« Temperature t controls crispness

t—0

0.8 -
= 0.6 -

.~

0.2 A

Theorem 1 Given its lower and upper bounds o;, B; € R,
the soft predicate of Eq. (1) applied on x € R converges to
the crisp predicate that decides whether x € (o, [3),

1 ifoa;, <x; < B

0 otherwise

(Yang et. al. 2018)
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SYFLow - Neural Rule Layer Il

Ingredients:
Differentiable binning predicate

Differentiable logical AND

1.
2.

Harmonic means behaves like an AND
1. If one T, is zero then evaluate to false
2. If all 7, are one then evaluate to true
Implicit feature selection with a;

Optimization

—

INENOEN

Learn the overall distribution Py

Repeat for

Learn the subgroup distribution Pys—;
N steps

Optimize classifier weights and bins

Output: Subgroup

max KL(Py|s=1 | Iy)

Subgroup | v Overall
Py|s=1 Py
S(x; a’ /B’ a? t)
ai as am—1 Qm,
T o vee | Tmm—1 Tm
A A A A
I T2 L A | Lm

Fully differentiable!
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Experiments — Materials Sciences

Gold Nanoclusters

Odd #Atoms A #Atoms > 8
= Odd #Atoms A % 4-bonds < 0.6 A % 2-bonds < 0.9
== Even #Atoms A 3-D Planarity A Gyration < 1.00
Even #Atoms A % 0-bonds < 0.01 A 2-bonds > 0.43
A Gyration < 1.00 A % 1 bond < 0.3

« Number of Atoms
« Even #Atoms e

« 3-D Planarity _...I___-_-_}

0.5 1 1.5 2
Y : HOMO-LUMO gap

Target: HOMO-LUMO gap
~ stability and conductivity
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From Nanoclusters to Analyzing Model Outputs

When can predictions be trusted? Aligning with instructions
izasy gray + water Acc: 98% Hard cub + climbing + tree Acc : 8%
photo of a gray bear in water photo of a bear cub climbing a tree

Does the model act fair? Ehm ... what?
8 7% 77 5% -loo% 936% COVID-19 (Training Data) COVID-19 (Unseen Data) Cat (Unrelated Data)

2. .l L . =

Darker Darker Lighter Lighter DNN  COVID-19  99.7% Non-COVID  75.1% COVID-19  100%
Males Females Males Females BNN  COVID-19  95.5% COVID-19  67.1%  COVID-19  99.8%

Ref. [17,18,19]



From Nanoclusters to Analyzing Model Outputs

When can predictions be trusted?
Human interpretable feature extraction

Easy  gaviwater  Acc:98% Hard e e A 8% 1. Select a labeling model e.g. RAM or SAM
photo of a gray bear in water photo of a bear cub climbing a tree 2. Forward the dataset and extract bounding
- boxes and labels
—_— 3. Forward the model you want to explain and

record the target e.g. loss or prediction
4, Compile results into a table

Does the model act fair?

Black Hunting Hairy Tree
Black  Climbing Hairy Tree

Black  Climbing Hairy Tree

Darker Darker Lighter Lighter Black  Climbing Hairy Tree

Males Females  Males  Females --——--
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From Nanoclusters to Analyzing Model Outputs

Human interpretable feature extraction

Black Hunting
Black  Climbing
Gray Hunting
Black  Climbing
Gray Walking
Black  Climbing
Gray Walking

* This is not always possible

Hairy
Hairy
Hairy
Hairy
Hairy
Hairy
Hairy

Tree
Tree
Water
Tree
Water
Tree

Water

« May also be too coarse

m I Z Z ' noun

- miH d/dH T T

Saliency maps

« Highlight important pixels for classification
 Mostly Gradient and perturbation-based
l.e. depending on an infinitesimal change

GBP
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VAR: Three simple steps to class-specific saliency maps

Step 1: Initial Attribution

Compute attribution for a set of classes c € {1, ...,K}:
A, = Attribution(x, c¢)

Where: x is the input and A, is the attribution for class ¢

Step 2: Pixel-wise Softmax

Compute softmax across classes for each pixel position (i, j)

eAc(i)/T

a9
- &
Mc(l;]) ij{zl eAk(i'j)/T O
Step 3: Final Attribution
&
, I . <
The final attribution for class ¢ is computed as i
&
O

Ve=40M0O IlMC—%> 1x1073

Zebra Bison

Where: © denotes element-wise multiplication, 1 is the indicator function,
1x10-3 is the threshold parameter



More than pretty pictures

Image Ablated
Zebra: 1.00 Zebra: 0.01 (-0.99)
Bison: 0.00 Target: Zebra Bison: 0.08 (+0.08)

E Ty

Zebra: 1.00 Zebra: 0.97 (-0.03)
Bison: 0.00 Target: Bison Bison: 0.00 (4+0.00)

19



More than pretty pictures

Image

Echidna: 0.00
Colobus: 0.00 Target: Echidna

o il

Echidna: 0.00
Colobus: 0.00 Target: Colobus

Ablated

Echidna: 0.00 (-0.00)
Colobus: 0.41 (+0.41)

o

Echidna: 0.15 (40.15)
Colobus: 0.00 (-0.00)

Ref. [20, 21]
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VAR: A Framework for Class-specific saliency maps

Object-Specific Instance-Specific Discriminative Features Shared Features

.

GBP

GBP + VAR

Bison Colobus Monkey Echidna Lynx Notebook

Keyboard

21



Understanding reasoning
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Why is it important?

Gaining new scientific insights What is reasoning?

~Reasoning is the process by which you reach
a conclusion after thinking about all the facts.*
— Collins dictionary

i.e. a relation between facts and a conclusion

\\\9{*‘&'1“\‘

\0’0 0
"**0"‘**040
A
NS4

“.. 45 out of 54 of the TCGA images misclassified by at
least one of the pathologists were assigned to the
correct cancer type by the algorithm”.

Conclusion

COVID-Net |

Gain insights into critical factors associated with U )
COVID cases Y

Ref. [22, 23]
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Extracting Features

Neuron activations Y
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\ Neurons are polysemantic

Slide credit: Ghada Said (masters student) 24



Extracting Features Concepts

Sparse Autoencoder

Concept4 Concept3 Concept2 Conceptl

(Not perfect, but a big leap forward

Loss Function: Reconstruction Error + Latents Sparsity *
* Latent Sparsity = L1 weight x L1(Latents)

Slide credit: Ghada Said (masters student) 25



Extracting Features Concepts

Concept
Feature activations Y
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Slide credit: Ghada Said (masters student) 26



Understanding reasoning
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Connecting concepts

Concept4 Concept3 Concept2 Conceptl

Slide credit: Ghada Said (masters student)
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Connecting concepts
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Conclusion

WIP WIP

DIFFNAPS

— Hard Acc: 8%

— cub + climbing + tree

E ~ photo of a bear cub climbing a tree
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