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Abstract

Discovering patterns in data that best describe the differences
between classes allows to hypothesize and reason about class-
specific mechanisms. In molecular biology, for example, this
bears promise of advancing the understanding of cellular pro-
cesses differing between tissues or diseases, which could lead
to novel treatments. To be useful in practice, methods that
tackle the problem of finding such differential patterns have
to be readily interpretable by domain experts, and scalable to
the extremely high-dimensional data.
In this work, we propose a novel, inherently interpretable bi-
nary neural network architecture DIFFNAPS that extracts dif-
ferential patterns from data. DIFFNAPS is scalable to hun-
dreds of thousands of features and robust to noise, thus over-
coming the limitations of current state-of-the-art methods in
large-scale applications such as in biology. We show on syn-
thetic and real world data, including three biological appli-
cations, that, unlike its competitors, DIFFNAPS consistently
yields accurate, succinct, and interpretable class descriptions.

1 Introduction
Machine learning can be broadly categorized into predic-
tive and discovery-based approaches. Predictive tasks, such
as object detection, protein folding (Jumper et al. 2021) and
fusion reactor control (Degrave et al. 2022), are aimed at
maximizing performance. Mastering such a given task of-
ten requires learning deep and intricate models from which
it is hard up to impossible to understand how it arrived at a
decision. In data-driven discovery, the goal is to find inter-
pretable relations, called patterns, in the data that best de-
scribe observed classes. That is, the focus is on interpretabil-
ity rather than maximizing performance. Discovery-based
approaches are in especially high demand in biology, where
the complex gene-regulatory dynamics and their differences
between tissues or across diseases remain unclear, but, when
elucidated, can offer new avenues for treatment and preven-
tion. Here, symbolic explanations are essential for domain
experts, for example, patterns of gene expression that are
associated with cancer subtypes, to be able to directly un-
derstand and act on these patterns.

Although there exist massive amounts of high-
dimensional data, such as genetic human variation or
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gene expression data, most existing approaches are not ap-
plicable as they either do not scale or are limited to pair-wise
interactions. Here, we suggest a novel neural network learn-
ing approach that follows the paradigm of neuro-symbolic
learning: leverage the predictive power of, and efficient
frameworks for neural networks, while constraining the
models such that learned patterns are fully interpretable.
In particular, we learn a modified NN architecture that in
the forward pass leverages binary weights and activations
to achieve symbolically interpretable intermediate features,
while leveraging efficient continuous optimization during
backpropagation (Fischer and Vreeken 2021).

To learn patterns that differentiate classes, such as healthy
and tumor tissue, we build an architecture that is comprised
of both a binary autoencoder and a separate classification
head, which we call DIFFNAPS. We propose a multi-task
objective to jointly optimize reconstruction and classifica-
tion, driving learned patterns to differentiate between classes
through a bottleneck in the autoencoder (see Fig. 1). We ad-
ditionally introduce regularizers that improve optimization
and emphasize interpretability of learned patterns.

We empirically evaluate DIFFNAPS on synthetic and real-
world data, comparing against baseline approaches such as
classification trees, but also recent proposals such as rule
lists, statistical and compression-based pattern mining, and
neuro-symbolic learning. We show that DIFFNAPS faithfully
reconstructs patterns relevant for distinguishing between
classes, is robust to noise, and easily scales to hundreds of
thousands of features, which makes it unique among existing
work. We consider three high-dimensional biological appli-
cations, including breast cancer genomics, on which DIFF-
NAPS finds meaningful patterns that hold promise for giving
domain experts insight in the drivers of these diseases.

2 Related Work
Finding class-specific descriptions is at the core of
discovery-oriented approaches in machine learning and data
mining. A text-book example—and still widely used in
practice—is the decision tree, which yields an interpretable
decision path leading to a classification.

In data mining, emerging pattern mining (Dong and Li
1999; Garcı́a-Vico et al. 2018) and subgroup discovery
(Klösgen 1995; Atzmueller 2015) are classic methods that
aim to discover the conditions under which the class la-



Figure 1: Left: The architecture of DIFFNAPS consists of a binarized autoencoder and a classifier attached to the hidden layer.
The neurons in the hidden layer encode patterns and are active if the corresponding pattern is present in the data. Right: The
table shows the parameters of DIFFNAPS. In the forward pass, the continuous weights WE are stochastically binarized (WE

b ),
while the classifier weights WC are kept continuous. The bias b in the hidden layer is ceiled to bTd . To extract the differential
patterns (bottom right) per class P 1 and P 2, both matrices, WE and WC , are deterministically binarized using the thresholds,
τE and τC . A pattern, encoded by a neuron, is given by the index set of all 1 in the corresponding row of the weight matrix
WE . For the differential patterns, the binarized classifier weight matrix functions as a multiplexer to assign patterns to classes.

bels assume an exceptional distribution. Emerging pattern
mining seeks to find every such condition, which results
in extremely many, highly redundant, and mostly spurious
results. Subgroup discovery yields the top-k patterns with
the strongest association with the target. While this circum-
vents the pattern explosion, the results are still redundant
(Van Leeuwen and Knobbe 2012). In contrast, we are inter-
ested in succinct and non-redundant descriptions.

Statistically significant pattern mining (Llinares-López
et al. 2015; Pellegrina, Riondato, and Vandin 2019) aims to
discover patterns that have statistically significantly different
distributions between classes. These methods tend to suffer
from the pattern explosion. That is, even on small data they
often find tens of thousands redundant patterns, partially due
to lack of multiple hypothesis test correction.

Pattern set mining (Bringmann and Zimmermann 2007;
Budhathoki and Vreeken 2015; Hedderich et al. 2022)
solves this by asking for a non-redundant set of class-
specific patterns that together describe the data well. These
methods work well on small data, but as they are based on
combinatorial-search heuristics that are (at least) quadratic
in the number of features, they are mostly inapplicable to
high-dimensional data.

Rule-based classification (Lakkaraju, Bach, and Leskovec
2016; Dash, Gunluk, and Wei 2018; Chen and Rudin 2018;
Proença and van Leeuwen 2020; Hüllermeier, Fürnkranz,
and Loza Mencia 2020; McTavish et al. 2022; Huynh,
Fürnkranz, and Beck 2023; Lin et al. 2022) aims to find in-
terpretable classification rules of the form if X1 = 1∧X5 =
1 then Y = 0. While such results are interpretable, these
methods primarily focus on prediction rather than descrip-
tion and, hence, miss out on important details. Additionally,
most are based on combinatorial optimization which pre-
vents them from scaling to high-dimensional datasets.

Neuro-symbolic classification (Wang et al. 2020, 2021;
Kusters et al. 2022; Dierckx, Veroneze, and Nijssen 2023)

has been proposed to overcome these computational limi-
tations. These approaches design neural architectures from
which, after training, symbolic classification rules can be ex-
tracted. Their optimization aside, in spirit these methods are
similar to traditional rule-based classifiers as they focus on
classification accuracy rather than complete rule discovery.
In contrast, DIFFNAPS combines data reconstruction with
classification to discover the human-interpretable explana-
tions relevant for the classes present in the dataset.

3 Method
In this section, we introduce DIFFNAPS, a fully interpretable
binary neural network-based approach for finding patterns
that describe the differences between classes in (very) high-
dimensional data. We start by giving the intuition.

3.1 DIFFNAPS in a Nutshell
Given a binary dataset and corresponding class labels, we
seek to find interpretable patterns, which succinctly and dif-
ferentially describe the partitioning of the dataset induced
by the labels. That is, we want to find patterns that are more
prevalent in a class than in the rest of the data and, hence,
allow us to discriminate between classes.

To this end, we propose DIFFNAPS, a binary neural-
network architecture designed to find exactly such inter-
pretable patterns. The architecture consists of a two-layer
binary autoencoder, combined with a classification head (see
Figure 1). The classification head is a fully connected layer,
attached to the hidden layer of the autoencoder.

During the forward pass, we interpret the continuous
weights wij ∈ [0, 1] in the autoencoder as Bernoulli vari-
ables distributed as B(wij) and binarize them stochastically.
Each neuron performs a dot product between the binary
weights and input. The neuron is active if the 1s in the in-
put align with the 1s in the weight vector. Thus the weight



vector can be interpreted as a pattern and hence we refer to
the hidden layer as the pattern layer. Intuitively, the weights
are optimized such that the autoencoder—the set of encoded
patterns—reconstructs the data well.

To find differential patterns, we need to reward those pat-
terns that are specific for a class. We achieve this by adding a
classification head, corresponding to a logistic regression on
the pattern layer. That is, we seek to classify samples based
on the presence and absence of patterns.

To find a good set of patterns, the network is trained using
a multi-task loss. The autoencoder is trained to minimize the
reconstruction error, while the classification head is trained
to minimize the classification error. As such, the network is
driven towards the learning of relevant patterns in the data
that are at the same time differential between classes.

3.2 DIFFNAPS in Detail
Next, we discuss DIFFNAPS in detail. We first introduce no-
tation, and then, in turn, discuss the architecture, how to ex-
tract differential patterns, how to carry out the forward pass,
the multitask loss, and how to backpropagate errors through
DIFFNAPS.

Notation We consider labeled binary datasets (X,Y ) ∈
{0, 1}n×m × {1, ...,K}n of n samples, m features and K
classes. We write Xi,j to refer to the value of the j-th feature
of the i-th sample. We denote the partition of the dataset for
class k by Xk = {Xi | Yi = k}.

A pattern p is a subset of feature indices p ⊆ {1...m}
and represents feature co-occurrences. A row Xi contains a
pattern p iff Xij = 1, ∀j ∈ p. The support supp(p) of a
pattern p is the number of rows that contain p, and analogue
suppk(p) is the support where additionally Yi = k. We have

P(p | k) = suppk(p)

nk
and P(k | p) = suppk(p)

supp(p)
,

where nk is the number of samples where Yi = k.
We say a pattern pk is differential for class k if it both has

a higher support in Xk than in X \Xk, and the probability
of class k is highest for records that contain pk. Formally, iff

k = argmax
k′∈{1...K}

P(pk | k′) = argmax
k′∈{1...K}

P(k′ | pk) .

Our goal is to find a set P k of such patterns per class k.

Architecture The architecture of DIFFNAPS consists of a
binary autoencoder and a classification head attached to the
hidden layer. We graphically depict it in Fig. 1.

The encoding and decoding layers of the autoencoder
share a set of continuous weights WE , which are learned
during backpropagation. The forward pass uses a binarized
version of this weight matrix WE

b . A hidden neuron j rep-
resents a pattern, and a feature i is part of the pattern corre-
sponding to neuron j, iff WE

b [i, j] = 1. The activation func-
tion of the encoder λE is a binary step function centered at a
learned bias term, which represents how many features need
to be present for the neuron to ”fire”—i.e. for the pattern to
be considered present in the sample. We refer to the hidden
layer as the pattern layer.

The decoding layer performs the transposed linear trans-
formation of the encoding layer i.e. W d

b = (WE
b )T . Hence,

if a neuron is active, the pattern encoded in that neuron is
used as a whole for the reconstruction. Consequentially, to
achieve a low reconstruction loss, the patterns formed during
optimization must succinctly describe the data.

To reward differential patterns, we connect a classifier
to the pattern layer with continuous weights WC that is
tasked to predict the label of a sample based on the pres-
ence and absence of patterns. The classifier is linear, and,
hence, highly interpretable. To extract differential patterns,
we binarize weight matrices WE and WC by thresholding
with τe and τc, respectively. As described above, the patterns
in the pattern layer are given by the index set of all i’s such
that WE

b [i, j] = 1. The discretized classifier weights allow
us to assign patterns to their respective classes. For a formal
description of the pattern extraction, we refer to App. A.2.

Forward Pass We denote the size of the hidden dimen-
sion of the autoencoder by h and the binary weights of the
encoder as WE

b ∈ {0, 1}h×m. We define a linear layer with-
out bias as fW (x) = Wx. For a binary input x ∈ {0, 1}m,
we compute the activations of the pattern layer as

z = fE(x) = λE(fWE
b
(x)) .

where λE : R → {0, 1} is the binary step function as de-
fined by Fischer and Vreeken (2021). To steer the encoded
patterns to be differential rather than merely descriptive, we
attach a classifier to the pattern layer. This classifier has con-
tinuous weights WC ∈ [0, 1]K×h and computes a linear
transformation followed by a softmax of the binary hidden
activations ŷ = softmax(fWC (z)). That is, its output de-
pends only on the presence or absence of patterns.

To ensure interpretability, we use the transposed encoder
weights as weights of the decoder WD

b = (WE
b )T ∈

{0, 1}m×h. The reconstruction x̂ of the input x is given by

x̂ = fD(x) = λD(fWD
b
(z)) ,

where λD is the activation of the decoder as defined by Fis-
cher and Vreeken (2021), clamping the input to the interval
[0, 1] and rounding it to the closest integer.

Objective Function Our objective function consists of
four terms: one for the autoencoder, one for the classifica-
tion, and two regularization terms. To optimize the classi-
fier, we use the cross-entropy loss between the predicted log-
its ŷ and the one-hot encoding of the ground truth label y:
lc(y, ŷ) =

∑K
k=1 yk log(ŷk). As binary tabular data tends to

be sparse, i.e., the number of ones #1 and number of zeros
#0 are highly unbalanced, we use a sparsity-aware recon-
struction loss (Fischer and Vreeken 2021) that weighs the
importance of reconstructing a 1 proportional to the sparsity
of the data. For a sample x ∈ {0, 1}m and reconstruction
x̂ ∈ {0, 1}m, the reconstruction loss is

le(x, x̂) =

m∑
j=1

((1− xj)α+ xj(1− α))|xj − x̂j | ,

where α = #1s
#1s+#0s is the sparsity of the data.



Our overall goal is to find a succinct description of the
classes in terms of class-specific patterns encoded by the
neurons in the hidden layer. To promote such patterns, we
adapt the L2-regularizer to penalize long patterns i.e. rows
with a lot of 1s. This adapted regularizer is given by

rs(W ) =

m∑
i=1

 h∑
j=1

Wi,j

2

.

Instead of considering each weight individually, we sum the
rows before squaring them. This penalizes a pattern as a
whole by imposing a quadratic cost on the length of the pat-
tern. Hence, the regularizer tilts the optimization to prefer
shorter patterns. To further push the weights to a binary so-
lution we employ a W-shaped regularizer (Bai, Wang, and
Liberty 2019; Dalleiger and Vreeken 2022), defined as

rb(W ) =
∑
w∈W

min{r(w), r(w − 1)} ,

r(w) = κ∥w∥1 + λ∥w∥22 .

This regularizer is based on the elastic-net regularizer and
the hyperparameters κ and λ specify the trade-off between
the ridge and lasso penalty. For κ = λ = 1, the regularizer
is depicted in Figure 3 in the Appendix. Compared to rs,
the W-shape regularizer is applied element-wise to push the
individual weights towards zero or one.

In the forward pass, we apply stochastic quantization
Wb[i, j] ∼ B(W [i, j]). If all W [i, j], for j = {1...m}, have
the same value, a sample of a row is binomially distributed
with p = W [i, j] and m trials. The expected value is then
mW [i, j]. Considering a minimum of two features for a neu-
ron to fire, this means that when all W [i, j] drop below 1/m
the neuron is on expectation ‘dead’. To prevent regulariz-
ers from zeroing out a neuron by pushing Wij below this
threshold, we offset the weights by −1/m before applying
the regularizers. For the same reason, we set the gradients
for rs to zero if

∑h
j=1 W [i, j] < 1 .

Given the parameters of the network θ = {WE ,WC} the
loss function for a dataset (X,Y ) is given by

L(X,Y ; θ) =

n∑
i=1

le(yi, ŷi)+λc lc(xi, x̂i)+rs(W
E)+rb(θ) ,

where λc is a parameter that weighs the classification loss.

Backward Pass We minimize this loss function using gra-
dient descent. For this, we need to compute the partial
derivatives with respect to the weights of the network. To
be able to pass gradients through step-functions, we use the
straight-through-estimator (STE), which is commonly em-
ployed in binary neural networks (Bengio, Léonard, and
Courville 2013). For a particular layer, gu denotes the up-
stream gradient. For the derivatives with respect to the au-
toencoder, we follow the approach of Fischer and Vreeken
(2021). In particular, for encoding layer WE and input x

∂fWE
b

∂WE
:= gux

⊤ ,
∂fWE

b

dx
:= (WE)⊤gu .

The derivative through the activation function of the de-
coder λD is given by ∂λD

∂x := 1gu. For the activation func-
tion of the pattern layer, the STE above is inapplicable. In the
case that features are wrongly reconstructed, the resulting
loss would propagate negative gradients through the STE,
even to inactive neurons. Hence, we adapt the gated STE,
which gates the gradient depending on whether a neuron was
active in the forward pass. The derivatives for bias b and in-
put x are

∂λE

∂b
:=

{
gu if λE(x) = 1

0 if λE(x) = 0
,

∂λE

∂x
:=

{
gu if λE(x) = 1

max (0, gu) if λE(x) = 0
.

In quantized neural networks, it has been observed that
quantizing the classification layer has a negative impact on
performance (Choi et al. 2018; Liu et al. 2018; Hubara et al.
2017). Thus we do not quantize the weights of the classi-
fier during training. Although the classifier is not quantized,
the classifications are transparent and interpretable, since the
classification head is similar to logistic regression and the
weights are constrained to be in the interval [0, 1].

Finally, after a round of backpropagation, all weights are
clipped to the interval [0, 1]. This enables stochastic bina-
rization for the autoencoder and the classifier for the next
forward pass and to transparently interpret the contribution
of a pattern to a certain class. We clamp the bias at a maxi-
mum of −1, such that at least two features have to be present
for a neuron to become active.

This concludes the formal description of DIFFNAPS.

DIFFNAPS in Practice To use DIFFNAPS in practice, we
need to choose the number h of hidden neurons and set λc.

For medium to high-dimensional data, setting the size of
the hidden layer lower than the dimensionality of the data,
m, creates an inductive bias towards differential patterns.
Since to achieve both a low reconstruction loss and low clas-
sification loss, the patterns in the hidden layer have to be pre-
dictive, i.e., high P(k | pk), and due to the bottleneck, the
patterns must cover the partition well, i.e., high P(pk | k).

For low dimensional data, choosing a small hidden layer
results in an under-parameterized network that will underfit.
Choosing a larger hidden layer, thus having more parame-
ters, outweighs the benefits of the bottleneck.

Parameter λc weighs the effect of the reconstruction and
classification losses. The magnitude of the reconstruction
loss varies strongly among different datasets. In practice, we
increase λc until the classification error saturates.

4 Experiments
We compare DIFFNAPS five state-of-the art methods on syn-
thetic and real-world data. In particular, we compare to de-
cision trees (CART, Breiman 1984), significant pattern min-
ing (SPUMANTE Pellegrina, Riondato, and Vandin 2019),
MDL-based label-descriptive (PREMISE, Hedderich et al.
2022) and classification rule learning (CLASSY, Proença and
van Leeuwen 2020), and neuro-symbolic classification rule
learning (RLL, Wang et al. 2021).



We additionally considered top-k subgroup discovery
(Lemmerich and Becker 2018), difference description (Bud-
hathoki and Vreeken 2015), falling rule lists (Chen and
Rudin 2018; Lin et al. 2022), optimal sparse decision
trees (McTavish et al. 2022), and class-specific BMF (Hess
and Morik 2017), but found these do not scale to, or do not
find patterns on non-trivial data.

PREMISE and SPUMANTE consider only binary classes.
To allow fair comparison in a multiclass scenario, we run
them in a one-versus-all for each class and merge the results.

The hyperparameters for the predictive approaches are
tuned based on accuracy on a hold-out set. For SPUMANTE,
we used the default parameters given by the authors. We fit
the hyperparameters of DIFFNAPS based on our loss func-
tion. The experiments for the neural approaches, i.e. DIFF-
NAPS and RLL, are executed on GPUs. For more on the ex-
perimental setup, we refer to Appendix A.3.

4.1 Synthetic Data
To evaluate all methods on data with known ground we first
consider synthetic data. We measure success in terms of soft
F1 (Hedderich et al. 2022), by which we avoid overly pe-
nalizing methods that recover only parts rather than exact
matches of ground truth patterns. The formal definition can
be found in Appendix A.4. Informally, the soft F1 score does
not require strict equality between a discovered pattern pd
and the corresponding ground truth pattern pg but uses a soft
equality, i.e., the Jaccard distance of pd and pg .

Data Generation In the experiments below we generate
synthetic data as follows. We start with an empty data ma-
trix of n rows and m features. We sample 10 patterns per
class, uniformly at random (u.a.r.) across features, drawing
their length from U(5, 15). We sample 20 common patterns
u.a.r, but draw their length from U(0.01m, 0.025m) to main-
tain the density of the data. Per class, we generate equally
many rows. Per row, we plant u.a.r. two common and three
class-specific patterns. We then apply both additive noise by
flipping ten 0s to 1s, as well as destructive noise by flipping
1s due to a pattern to 0s with a probability of 2.5%. Finally,
we assign the class label such thatP(k | p ∈ Pk) = 0.9. Un-
less specified otherwise, we report the average results over
five independently drawn datasets.

Scalability in m First, we consider how well DIFFNAPS
scales to high dimensional data. We fix the number of
classes K to 2, the number of rows n to 10 000, and vary
m ∈ {100, 500, 1k, 5k, 10k, 15k, 20k, 25k, 50k, 100k}. To
reduce the overlap across patterns in low-dim. data m <
1000, we sample 5 patterns per class and no shared patterns.

We run all methods and report their results in Fig. 2a,b.
Except for PREMISE and SPUMANTE, all terminate within
24 hours. PREMISE runs out of time for m > 20k.
SPUMANTE runs out of memory for m < 1k and m > 10k.
We see in Fig. 2a that CLASSY is one order of magnitude
slower than DIFFNAPS, RLL, and CART all of which per-
form on par in terms of runtime.

Next, we inspect the average F1-scores, which we show
in Fig. 2a. We see that CLASSY, RLL and CART perform
poorly, as they recover only small parts of the ground truth

patterns, and that SPUMANTE varies in performance due to
having to sub-sample the data. PREMISE achieves scores of
approx. 0.5 across all m. DIFFNAPS consistently recovers
ground truth well across many orders of magnitudes of m.
For very high dimensional data, performance slowly dete-
riorates but still outcompetes the state-of-the-art by a wide
margin.

Multi-class Next, we examine how well DIFFNAPS scales
to a large number of classes. To this end, we gener-
ate data as above, varying the number of classes K ∈
{2, 5, 10, 15, ..., 25, 50}, generating 1 000 rows per class,
setting m = 5000. We give the results in Fig. 2c. RLL,
CLASSY, CART, and SPUMANTE fail to recover more than
a small subset of the ground truth. In addition SPUMANTE
runs out of memory for more than 10 classes. PREMISE
achieves scores of around 50% up to 20 classes, but fails
to terminate for K ≥ 40, as running in a one-versus-all set-
ting incurs high computational costs. In contrast, DIFFNAPS
stably performs best in this setting.

Robustness to Noise Finally, we evaluate how robust
methods are to noise. Here, we set K = 2, m = 5000,
and n = 2000. First, we consider additive noise by varying
the number of randomly added 1s per row, from 0 to 100. In
the interest of space, we postpone the Figure to App. Fig. 5.
We find that SPUMANTE rapidly fails to discover meaning-
ful results, and runs out of memory for a = 100. In contrast,
DIFFNAPS and PREMISE are robust across varying a, with
DIFFNAPS outperforming its competitors by a wide margin.

Second, we consider destructive noise by varying the
probability of flipping a 1 to a 0, from 0% to 60%. We show
the results in Fig. 2d. CART, CLASSY, and RLL all obtain
F1 scores of near-zero, SPUMANTE performs slightly bet-
ter on average but shows a large variance in the performance
across repetitions. PREMISE is the best among competitors,
but its performance declines rapidly even for small amounts
of destructive noise. In contrast, DIFFNAPS is robust, its per-
formance virtually unaffected up to 20% destructive noise,
i.e., up to a signal-to-noise ratio of 6dB.

4.2 Real-World Data
Next, we evaluate DIFFNAPS on five biological datasets. We
consider phenotypical Cardio data (Ulianova 2017), a Dis-
ease diagnosis (Patil and Rathod 2020) dataset, two high-
dimensional binarized gene expression datasets for breast
cancer, BRCA-N and BRCA-S, that we derived from The
Cancer Genome Atlas (TCGA) (see App. A.5), and a hu-
man genetic variation data set (The 1000 Genomes Project
Consortium 2015; Fischer and Vreeken 2020).

We consider the same competitors as before, except RLL
as it returns no patterns for any data but Cardio. To obtain
results with SPUMANTE we had to restrict it to 250 samples
for Cardio, 4000 for Disease, 50 for both BRCA datasets. We
could not find any setting to make it work on Genomes. We
report running time for all methods in App. Tab. 2.

Quantitative Results As the ground truth is unknown,
we report the number of discovered patterns, their average
length, and the area under the curve of what percentage of
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Figure 2: Scalability. We show runtime (a) and F1-scores (b) when varying m, resp. F1-scores when varying the number of
classes K (c) and varying the amount of destructive noise (d). Our method, DIFFNAPS can confidently handle a large number
of features with a negligible increase in runtime, outperforms all state-of-the-art competitors significantly in terms of F1.

DIFFNAPS (ours) CART CLASSY PREMISE SPUMANTE

Dataset n m K #P |P | AUC #P |P | AUC #P |P | AUC #P |P | AUC #P |P | AUC

Cardio 68k 45 2 14 2 .56 7k 6 .62 10 2 .36 28 1 .51 346 4 .56
Disease 5k 131 41 838 2 .84 1 2 .00 25 2 .11 187 3 .84 2k 3 .39
BRCA-N 222 20k 2 146 9 .91 1 2 .00 3 1 .45 – – – 4k 3 .95
BRCA-S 187 20k 4 1k 2 .86 22 2 .31 2 1 .23 – – – 0 0 0
Genomes 2.5k 225k 6 732 7 .77 127 4 .46 7 2 .36 – – – – – –

Table 1: Real world data We give the number of samples (n), features (m), and classes (K), and per method the number
of discovered patterns (#P ), average length of discovered patterns (|P |) and area under the curve (AUC) of the sensitivity-
specificity plot (see App. Fig. 6, Sec A.5). We aborted experiments taking longer than 24h or running out of memory (–).

the data the patterns cover when we order them by proba-
bility of seeing a class given a pattern (see App. A.5). In-
tuitively, this corresponds to sensitivity (how much do we
cover) versus specificity (how specific are patterns for that
class). To filter spurious patterns we compute this measure
over patterns for which at least 1/k + 0.1 of their proba-
bility mass is assigned to one class. For example, for the
binary setting only those patterns that occur at least 60%
in the class, where 50% would correspond to independence
(random coin flip).

We report basic statistics and results in Tab. 1. We observe
that DIFFNAPS performs well across all datasets, obtaining
AUC scores that are either best by a wide margin (Disease,
BRCA-S, Genomes) or close second best (Cardio, BRCA-N).
Consistent with our synthetic data study, our competitors
yield mixed results; they do not scale to high dimensional
data (PREMISE, SPUMANTE), or return prohibitively many
or unspecific patterns (SPUMANTE, CART, resp. CLASSY).

Regarding the length of discovered patterns, we ob-
serve that those by DIFFNAPS reflect the complexity of the
datasets: on Cardio and Disease, which contain complex,
information rich features, it finds smaller patterns, while for
the other datasets, that consist of low-level molecular infor-
mation as features, it finds longer patterns to capture com-
plex relationships. In contrast, CLASSY generally discov-
ers only few, medium-length patterns across datasets, while
CART recovers more complex relationships that are, how-
ever, less descriptive of the classes as measured by the AUC.

Qualitative Results Next, we analyse the results of DIFF-
NAPS in detail and show their relevance for biological re-

search on the breast cancer datasets.1

Differentiating Breast Cancer and Healthy Tissue Breast
cancer (BRCA) is the most common cancer and the lead-
ing cause of death from cancer among women in the
world (Lukasiewicz et al. 2021). The exact underlying gene
regulatory dynamics are actively researched.

We apply DIFFNAPS on BRCA-N and discover 146 dif-
ferential patterns of gene co-expression for BRCA and adja-
cent normal tissue. To see if these capture relevant molecular
differences, we run a statistical gene set over-representation
analysis using KEGG (see App. A.5), a manually curated
gold standard for molecular interactions, reactions, and rela-
tions (Kanehisa et al. 2017).

We first do a pooled analysis over all genes identified by
any discovered pattern for a class, i.e., the union of features
in the respective patterns. We find that enriched pathways
for tumor tissue correspond to known cancer drivers, such
as MAPK and WNT signalling, while for the healthy tis-
sue we find pathways linked to the regulation of lipolysis
in adipocytes as well as PPAR signalling, both of which are
known to be dysregulated in BRCA (Yang et al. 2018; Zhao

1Human variation data, such as the Genomes dataset, is an ideal
application for DIFFNAPS as it is a high-dimensional resource of
binary data in which we can uncover potential genetic predispo-
sitions of individuals to diseases, thus allowing to advance early
detection and treatment. However, in the available data, the target
class is the population membership of the individual, which raises
ethical concerns for detailed analysis. Sadly, no further meta-data
is available to meaningfully split Genomes for differential analysis.



et al. 2022). In short, DIFFNAPS discovers patterns that to-
gether describe complex, cancer-related functions.

Investigating individual patterns, we find that while many
identify general pathways like above, others are enriched for
specific pathways, such as PPAR. This shows the discovered
patterns reveal details that can potentially be used for dis-
covering alternative treatment targets for these pathways.

Differentiating Cancer Subtypes It is well known that breast
cancer is not one single disease, e.g. the Luminal A, Lumi-
nal B, HER2+, and the Triple Negative subtypes all show
distinct molecular behaviour, response to treatment, and pa-
tient survival. To investigate whether DIFFNAPS can eluci-
date differences between these subtypes, we run DIFFNAPS
on BRCA-S, a balanced dataset of primary BRCA tissue with
subtype label, and again analyse the discovered patterns us-
ing a gene set over-representation analysis in KEGG.

Starting with a pooled analysis, we find significantly en-
riched pathways that capture specifics of classes. Luminal
A, for example, is defined by a lack of HER2. For this
subtype, DIFFNAPS discovers patterns that are enriched for
(i.e. related to) dilated cardiomyopathy. This is a common
side-effect in Trastuzumab treatment, a drug which targets
and depletes HER2 in HER2 positive subtypes (Crone et al.
2002). Luminal B is Estrogen receptor positive, meaning it
expresses this receptor. For this subtype, we find patterns
that are significantly enriched for sphingolipid metabolism.
This is an important component for cell survival, prolifera-
tion, and promotion of cell migration and invasion in Estro-
gen receptor-positive BRCAs (Corsetto et al. 2023). These
metabolites are also targets of treatment, and the discovered
patterns could reveal insights leading to potential new ther-
apeutic targets.

Promising Novel Patterns On both BRCA datasets, we find
highly class-specific patterns, with average log-odds of
P(p | k) against P(p | ¬k) of ≈ 8 resp. ≈ 5. Encourag-
ingly, the above analysis above showed that many of these
patterns capture complex biological processes related with
BRCA progression or tumorigenes. More exciting perhaps
are those patterns for which the genes are not yet annotated
in a pathway but are strongly associated with BRCA or its
subtypes. We are looking forward to conducting an in-depth
analysis with oncologists, relating these patterns with more
fine-grained subtypes or treatment groups.

5 Discussion
Experiments show that DIFFNAPS finds succinct sets of dif-
ferential patterns, scales to hundreds of thousands of fea-
tures, large number of classes, and is robust to noise.

On synthetic data, we saw that existing methods fail to re-
cover significant portions of the planted differential patterns.
Rule-based methods only recovered small subsets of incom-
plete patterns. SPUMANTE suffers from memory problems,
and returns overly large, redundant results. PREMISE does
account for redundancy, which results in better performance,
but its combinatorial search does not scale well. RLL and
CART scale very well, but show poor performance on syn-
thetic data. Surprisingly, none of the existing approaches are
robust to destructive noise.

On real world data, we find DIFFNAPS is the only ap-
proach that scales well and retrieves high-quality patterns.
While other approaches show good performance on individ-
ual datasets, e.g. CART on Cardio and PREMISE on Disease
data, they fail to do so in general. We also note that CART
and SPUMANTE tend to return thousands of patterns, which
undermines the goal of human interpretation.

DIFFNAPS fulfills the goal we set for this work and
presents itself as a suitable candidate to take on the chal-
lenge of high-dimensional pattern mining in applications
like genomics. As encouraging its ability in retrieving class-
descriptive patterns at scale is, there is of course no free
lunch. For example, on low-dimensional data of up to a hun-
dred features, DIFFNAPS has a harder time differentiating
classes and individual patterns and performs ‘only’ on par
with other approaches. For such low-dimensional regimes,
employing methods with guarantees, that are usually infea-
sible for large-scale data is still preferential.

Similar to most existing work, DIFFNAPS considers only
conjunctions of features as patterns. In many applications,
relations can be more complex, such as mutually exclusive
features. It would make for engaging future work to study
extensions of DIFFNAPS to capture such relations. In a case
study on breast cancer datasets, we show that DIFFNAPS
discovers patterns that capture class-relevant biological pro-
cesses. The results are not only encouraging, but also contain
many patterns for which the genes are not yet annotated to
a pathway or process, or the function of individual genes
is still unknown. These results offer an exciting opportu-
nity to investigate novel links between genes and diseases
in follow-up studies with domain experts.

6 Conclusion
We studied the problem of discovering differential patterns,
i.e., patterns that succinctly describe and differentiate be-
tween the classes present in the data. Existing methods
are often limited to binary classes, do not scale to high-
dimensional data, or retrieve uninformative pattern sets.

To tackle this problem, we proposed a novel neural net-
work architecture DIFFNAPS consisting of a binary autoen-
coder and a classification head. With a flat, binary architec-
ture, the learned intermediate layer captures symbolic pat-
terns. For the optimization, we proposed a multi-task objec-
tive to jointly optimize the reconstruction and classification,
thus driving learning of patterns that both reconstruct the
data well and differentiate between classes.

On synthetic and real-world data, including biological
case studies on breast cancer, we show that DIFFNAPS
strikes a unique balance among existing work, scales to
high-dimensional data, is robust to noise, and accurately re-
trieves differential patterns that are highly interpretable.
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A Appendix
A.1 Clamping Function
The clamping function used in section 3.2 is given by

clamp(x, a, b) =


a if x < a,

x if a ≤ x ≤ b,

b if b < x .

The W -shaped regualrizer is plotted in Fig. 3 for λ = κ = 1.
After each epoch, λ and κ are increased using an exponential
scheduler (Dalleiger and Vreeken 2022).
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Figure 3: W -shaped regularizer. To push the weights to-
wards a binary solution during optimization, which allows
a better quantization, we employ the W -shaped regularizer
discussed in the main paper (here, λ = κ = 1).

A.2 Method Details
Extracting Differential Patterns The differential pat-
terns are extracted in two steps: First, we extract all patterns
encoded in the pattern layer. Next, we assign the extracted
patterns to the corresponding differential pattern sets P k.

Given the trained continuous weights of the autoencoder
WE ∈ [0, 1]h×m and weights of the classifier WC ∈
[0, 1]K×h, we start by extracting all patterns P encoded in
the pattern layer. For this, we binarize the weight of the au-
toencoder with a fixed threshold τe. The pattern pi encoded
in the i-th neuron is given by pi = {j | WE [i, j] > τe, j ∈
{1...m}}, for i ∈ {1, ..., h}. The overall pattern set is given
by P = {pi | pi ̸= ∅, i ∈ {1, ..., h}}. Next, we assign
the differential patterns to the classes, for which we use a
threshold τc to binarize the weights of the classifier. The dif-
ferential patterns P k for class k ∈ {1, ...,K} are given by

P k = {pi | WC [k, i] > τc, pi ∈ P} .

Informally, a pattern pi is assigned to the differential pat-
tern set Pk, if it is connected to the output for the classifi-
cation of class k. In practice, the thresholds can be chosen
by grid search and choosing the pair (τte , τtc), for which the
discretized network achieves the lowest reconstruction and
classification error.

A.3 Experimental Details
Hardware for Experiments We implemented DIFFNAPS
in PyTorch, and use the publicly available implementations
of other methods. Those that leverage a GPU, i.e. DIFFNAPS

and RLL, were run on machines with NVIDIA DGX A100
and AMD Rome 7742 CPUs. The others were run on Intel
Xeon(R) Gold 6244 machines with 256GB RAM. Individual
experiments were stopped after 24 hours or if they exceeded
256GB of RAM.

Hyperparameter Optimization Hyperparameters are op-
timized as follows. For DIFFNAPS, we fine-tune reconstruc-
tion loss and classification accuracy on a hold-out set. For
CART, we set the maximal depth to 20 to facilitate reason-
able pattern sizes while not harming performance, and op-
timize Gini impurity. For SPUMANTE, we mine the top 1
million patterns using a significance threshold α = 0.05, a
correction term γ = 0.01, and set the sampling rate to 25%
to keep it from running out of memory. For CLASSY, we
use a beam width of 200 and a maximum search depth of
20, which provides a good tradeoff between pattern-length
and computational burden. For RLL, we optimized the num-
ber of hidden layers, the number of neurons in the hidden
layer, the learning rate, and weight decay based on the per-
formance on a hold-out set.

A.4 Synthetic Data
Formal Definition of Soft F1 Score To avoid over-
penalization of methods that only recover sub-parts of the
individual patterns, we adopt the soft F1 score from Hed-
derich et al. (2022). Instead of using a strict equality for
computing recall and precision, we resort to using Jaccard
distance. Formally, we define the soft F1 score as

SoftPrec (Pd, Pg) =
1

|Pd|
∑

pd∈Pd

max
pg∈Pg

|pd ∩ pg|
|pd ∪ pg|

,

SoftRec (Pd, Pg) =
1

|Pg|
∑

pg∈Pg

max
pd∈Pd

|pd ∩ pg|
|pd ∪ pg|

,

SoftF1 (Pd, Pg) =
2 ∗ SoftPrec ∗ SoftRec
SoftPrec+SoftRec

,

where we denote the sets of ground truth resp. discovered
patterns by Pg and Pd.

Additional Results Here, we report additional statistics
and results for the experiment on synthetic data. In Fig. 4a
and Fig. 4b, we report the precision and recall for the scala-
bility in m (Sec. 4.1). DIFFNAPS performs equally well with
regard to precision and recall. In contrast, our competitors
achieve a significantly higher recall than precision. This is
especially prevalent for PREMISE and CART, which explains
the overall low F1-score in Fig. 2b.

In Fig. 5, we report the F1-score for varying numbers
of random additive features a ∈ {0, 10, 20, ..., 90, 100}.
On average, DIFFNAPS outperforms all competitors, while
PREMISE has an overall smaller variance. SPUMANTE suf-
fers from large variance and degrades after 50 random fea-
tures and runs out of memory a = 100.

A.5 Real data
Computing AUCs As we do not have the ground truth for
real world data, we resort to evaluating the area under the



Runtime

Dataset Rows Columns k DIFFNAPS (ours) CART CLASSY PREMISE SPUMANTE

Cardio 68k 45 2 1m33s 1s 15s 10s 43s
Disease 5k 131 41 1m40s 1s 14s 8s 48s
BRCA-N 222 20k 2m 18s 1s 33m40s – 3h45m
BRCA-S 187 20k 4m 58s 1s 26m08s – 2h31m
Genomes 2.5k 225k 6 8m59s 28s 8h20m – –

Table 2: Runtime real world data. We specify the time taken to compute the results. We abort experiments that ran out of
memory or took longer than 24h (–).
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Figure 4: Additional results for Scalability. We provide the
soft precision score (a) and soft recall score (b) on the syn-
thetic data with an increasing number of features.

curve of what percentage of the data the patterns cover when
we order them by the probability of seeing a class given a
pattern. This can be roughly translated into sensitivity (how
much of the dataset do we cover) versus specificity (how
specific is the pattern for that class). To filter spurious pat-
terns, we only consider patterns with a predictive probability
1
K +0.1 (i.e., at least slightly more likely than chance). More
formally on the x-axis we plot P(k | pk) = suppk(pk)

supp(pk)
. If a

pattern pkis very specific to a class k, then P(k | pk) = 1
and if it is unspecific P(k | pk) = 0

On the y-axis, we plot how much of the dataset is covered
(explained) given all the patterns that pass the threshold p
and have a predictive probability 1

K + 0.1 . The coverage
cov(p,X) of a pattern p for a dataset X is defined as

cov(p,X) = {Xi | p ⊂ Xi} .

With a slight abuse of notation, the coverage of a pattern set
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Figure 5: Results for additive noise We report the soft F1
score on synthetic data with different amounts of random
additive features a ∈ {0, 10, 20, ..., 90, 100}.

P is then given by

cov(P, X) =
⋃
p∈P

cov(p,X) .

With P k
q , we denote the set of patterns such that such that

P(k | pk) > p and is not spurious. Then for a threshold p,
the corresponding value on the y-axis yp is computed as

yp =
1

K

K∑
k=1

| cov(P k
q , X

k)|
|Xk|

.

That is, per class k, we compute how much of the corre-
sponding partition is covered and take the mean of those in-
dividual coverages.

Sensitivity-Specificity Curves Figure 6 shows the
sensitivity-specificity curves for the AUCs in (Table 1).

Processing of BRCA Data We obtained re-aligned bulk
RNA-seq data of TCGA BRCA samples through re-
count3 (Wilks et al. 2021). We first filtering samples into
primary tumor and adjacent normal tissue samples and keep-
ing only protein-coding genes with non-zero expression in at
least one sample. We then remove duplicate samples of in-
dividuals, keeping the one with highest sequencing depth.
Gene expression counts were log-TPM transformed.

To binarize the expression data, for each gene, we set sam-
ples that have expression larger than the upper quartile to 1,
all others to 0. If the upper quartile is 0, we set all non-zero
samples to 1.

For the normal vs tumor data (BRCA-N), as many of the
competitors are sensitive to class-imbalance, we kept only
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Figure 6: Real world data. Here, we plot the specificity-coverage curves used to compute the AUCs reported in Tab. 1. The
curves are computed as explained in Sec. A.5.

the matching samples, i.e., where individuals where both ad-
jacent normal as well as primary tumor tissue was available.

For the BRCA subtype data (BRCA-S), we followed the
same simple binarization scheme, and kept at most 50 sam-
ples per subtype to keep the data roughly balanced, sampling
at random without replacement. The four subtypes—luminal
A, luminal B, HER2+, and triple negative—where defined
based on annotated receptor status of the Estrogen recpetor
(ER), the Progesterone receptor (PR), and the human epider-
mal growth factor receptor 2 (HER2) available from the re-
count data. In particular, we define luminal A as (ER+, PR+,
HER2-), luminal B as (ER+, PR-, HER2-), HER2+ as obvi-
ous, and triple negative as (ER-, PR-, HER2-). We removed
all samples that do not belong to any of these subtypes or
where receptor status was not available.

Analysis of BRCA Patterns To analyze pattern sets dis-
covered by DIFFNAPS qualitatively in terms of whether they
represent reasonable biological functions specific to a label,
we compute gene set over-representation statistics for gene
relationships annotated in the Kyoto Encyclopedia of Genes
and Genomes (KEGG). KEGG serves as a gold standard
for known biological pathways and relationships, including
hand-drawn and manually curated cellular pathways. A gene
set over-representation analysis tests whether an overlap of
a given gene set (e.g., a pattern or union of patterns) with an
annotated pathway is more likely than chance, where the null
overlap statistic is computed using a background gene set
(here: the set of genes in the dataset). We use the ENRICHR
software package for the gene set over-representation anal-
ysis and report results as significant with a p-value cutoff
of .05 (Chen et al. 2013). For an overall assessment we
consider pathways that are found for the union of genes
across all patterns for a class. We also enriched pathways
for each pattern individually, many of the patterns, however,
were too small to be considered for enrichment or contained
genes for which no annotation is available in KEGG. To
obtain an estimate of the average log-odds ratios of like-
lihood of a pattern set P describing a class, we compute
1
|P |

∑
p∈P ln

(
P (p|l)

P (p|¬k)

)
, where ln is the natural logarithm

and we do not compute those terms where P (p | ¬k) = 0,
which leaves us with a lower bound of the log-odds.


