Nils Philipp Walter

 $\ \, \ \, \ \,$ nilspwalter.github.io | $\ \, \ \, \ \,$ nils.walter@cispa.de | $\ \, \ \,$ nilspwalter

I am a second-year Ph.D. student specializing in **robust** and **explainable** machine learning. I am passionate about solving **real-world problems**, particularly in genomics, physics, reinforcement learning, and mechanistic interpretability. My goal is to develop novel **neuro-symbolic** methods that are not only **predictive** but also enable practitioners – me – to **gain deeper insights**.

Education

June 2023 - June 2027	CISPA Helmholtz Center for Information Security, Ph.D. Computer Science Topic: Develop novel neuro-symbolic methods that are not only predictive but also enable practitioners to gain deeper insights into the problem they are addressing.
October 2020 -	Saarland University, M. Sc. Computer Science (1.3/1.0)
May 2023	Thesis: HyREAL: On Hybrid Learning and Reasoning for Explainable and Safe Navigation of Autonomous Cars in Interactive POMDPs
	Courses: Deep Reinforcement Learning, Hybrid Learning and Reasoning, Trustworthy Graph Neural Networks, Probabilistic Machine Learning, Software Engineering
October 2016 -	Saarland University, B. Sc. Computer Science (minor Economics) (1.7/1.0)
July 2020	Thesis: Adversarial Textures: Misleading Deep Neural Networks by Overlaying Semi-Transparent Textures
	Courses: High-Level Computer Vision, Neural Networks: Implementation and Applications, Machine Learning, Artificial Intelligence, Introduction to Computational Logic

Employment History

February 2022 - May 2023	CISPA Helmholtz Center for Information Security, Student Researcher, Group Vreeken - Continuous optimization for data mining - Knowledge discovery for high-dimensional datasets
September 2020 - December 2021	 Max Planck Institute for Informatics, Student Researcher, Group Schiele Adversarial and corruption robustness of Quantized Neural Networks Role of BatchNorm for adversarial robustness
January 2019 - October 2019	Software AG - R&D department, Working student - Detection of manufacturing defects in a production line using CNNs - Review machine learning methods for an EU-funded project - Administration and setup of virtual machines and LXC containers using Proxmox

Publications

- [1] Walter, N. P., Adilova, L., Kamp, M., Vreeken, J (2024). The Uncanny Valley: Exploring Adversarial Robustness from a Flatness Perspective. arXiv preprint.
- [2] Xu, S., Walter, N. P., Kalofolias, J., Vreeken, J. (2024). Learning Exceptional Subgroups by End-to-End Maximizing KL-divergence. In *Proceedings of the 41st International Conference on Machine Learning (ICML)*. (spotlight, 3.5 % acceptance rate)
- [3] Walter, N. P., Fischer, J., Vreeken, J. (2024). Finding Interpretable Class-Specific Patterns through Efficient Neural Search. In *The 38th Annual AAAI Conference on Artificial Intelligence*. AAAI.
- [4] Walter, N. P., Stutz, D., Schiele, B. (2022). On Fragile Features and Batch Normalization in Adversarial Training. Extended abstract in *The Art of Robustness Workshop (CVPR)*.

Teaching Experience

WS $23/24$	Elements of Machine Learning, Teaching Assistant
WS $21/22$	Elements of Machine Learning, Tutor
SS 21	Machine Learning, Tutor
WS $19/20$	Machine Learning, Tutor
WS 17/18	Programming 1, Tutor

Student Supervision

June 2024 - Master Thesis, Jawad Al Rahwanji

current - Finding subgroups with exceptional survival characteristic

- Adapt our [2] differentiable subgroup discovery approach to account for survival analysis.

May 2024 - Student Researcher, Benedikt Schardt

current - Discovering statistically significant patterns from high-dimensional gene expression data.

- Use E-values to correct for multiple hypothesis testing

February 2024 - Student Researcher, Felix Falkenberg

current - Explainable machine learning for image and graph approaches

- Current focus is on analyzing the faithfulness of $\operatorname{GradCam-like}$ explanations

Skills

Programming Python, C++, Java, CUDA C++, Matlab, R, Coq

Libraries Pytorch, Numpy, Matplotlib, Pandas, Scikit-learn

Tools Slurm, Linux, Docker, tmux, Git, Proxmox, LaTeX, Jupyter, LXC

Languages

German: Native English: Advanced French: Beginner Italien Beginner