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Figure 1. Properties of VAR Attributions. VAR attributions are object-specific and visually ground correct target objects. VAR at-
tributions are instance-specific, identifying features that are relevant on a by-part-basis. VAR attributions are class-discriminative,
yielding features that separate closely related classes. VAR attributions reveal shared concepts between closely related classes. In
contrast, vanilla attribution methods (here GBP) do not show these properties.

Abstract

Neural networks are part of daily-life decision-making,
including in high-stakes settings where understanding
and transparency are key. Saliency maps have been de-
veloped to gain understanding into which input features
neural networks use for a specific prediction. Although
widely employed, these methods often result in overly
general saliency maps that fail to identify the specific in-
formation that triggered the classification. In this work,
we suggest a framework that allows to incorporate at-
tributions across classes to arrive at saliency maps that
actually capture the class-relevant information. On es-
tablished benchmarks for attribution methods, including
the grid-pointing game and randomization-based sanity
checks, we show that our framework heavily boosts the

performance of standard saliency map approaches. It is,
by design, agnostic to model architectures and attribu-
tion methods and now allows to identify the distinguish-
ing and shared features used for a model prediction.

1. Introduction
Neural Networks are prime models for decision-making,
yet are inherently opaque when it comes to their reason-
ing. Especially in high-stakes prediction, but also in a
more general context, there is, however, a growing need
for more transparent reasoning that provides the user
with an understanding of the model’s decision. In the
context of Explainable Artificial Intelligence (XAI), ex-
planations that describe which input features are used for
a prediction, for example specific image regions, were
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developed. This group of approaches is coined attribu-
tion methods as they attribute importance of input fea-
tures to the output of a model and is among the most
popular in XAI, already in use in high-stakes domains
such as medical imaging [6].

However, it recently has been shown that these post-
hoc explanation have severe shortcomings; while the
features often seem sensible, they turned out to not
properly model the class-relevant features used by the
network [27]. Thus, the explanations failed in pro-
viding the desired information of which input features
where actually relevant for the classification. Here,
we propose an attribution method-agnostic as well as
architecture-agnostic framework that adapts any given
gradient-based attribution score to reflect the informa-
tion that is relevant for distinguishing classes, providing
saliency maps for image classification that reveal the dis-
criminative and locally shared features in the input used
by a network to make a prediction. In particular, we pro-
pose a simple yet powerful approach considering attribu-
tions across different classes at each spatial location.

Our framework for Visualizing Actually Relevant
features (VAR) is easy to adapt to any gradient-based at-
tribution score with little computational overhead. The
resulting saliency maps on standard vision benchmarks
qualitatively provide much more focused and class-
relevant information across different models, including
CNN and Transformer-based architectures (see Fig. 2).
Quantitatively, VAR drastically improves the ability to
retrieve correctly localized attributions in the grid point-
ing game, which was previously a culprit of existing
work [27]. We further test our framework on insertion
ablations [17], and show that VAR attributions are more
robust to randomization-based sanity check [1]. Our
framework thus equips attribution methods to identify
the distinguishing features that a network uses for pre-
diction, providing explanations that now properly de-
scribe which input features were class-relevant.

2. Related Work

Research in XAI gave rise to three main approaches to
discover prediction-relevant input features. Perturbation
techniques such as RISE [26], extremal perturbations
[11], and SHAP [23] probe model behavior by modi-
fying inputs. While effective, these methods are com-
putationally expensive, often requiring multiple forward
passes and significant processing time and often con-
sider input features independently. Approximation tech-
niques, including LIME [29] and FLINT [25], create
interpretable surrogate models to mimic complex net-
works locally. Such surrogates can, however, largely dif-

fer from the target model reasoning, limiting their ability
to accurately capture the prediction dependencies.

The third category, activation- and gradient-based
methods, strikes a balance between efficiency and fi-
delity by leveraging the network’s internal computation
graph. The simplest of these, standard gradient visu-
alization [34], treats gradients of network outputs with
respect to input features as importance scores, further
multiplying by input magnitudes to receive more accu-
rate saliency maps (Input×Gradient). Integrated Gra-
dients [37] offers attributions with theoretical justifi-
cations by accumulating gradients along a straight-line
path from baseline to input. For CNN-specific visual-
izations, GradCAM [31] generates activation maps by
combining feature maps weighted by their average gra-
dients and upsampling. Layer-wise Relevance Propaga-
tion (LRP) [3] defines custom activation-based propaga-
tion rules for distributing relevance backwards through
the network and requires architecture-specific adapta-
tions [24]. Similarly, DeepLift [32] uses reference acti-
vations to determine neuron importance through custom
backpropagation procedures.

Counterfactual explanation techniques focus on dif-
ferentiating between individual classes. Many ap-
proaches [2, 8, 16, 20, 22, 41] generate counterfactual
inputs through complex generative models. Specific
approaches generate [38] or use search algorithms to
find [12] contrastive example inputs. Two approaches
focus specifically on extracting what is the different,
contrastive, information between classes [13, 39]. In
contrast, here, we want to discover any input fea-
ture that is relevant for classification, including object-
and instance-specific features, but also features that are
shared across classes, which are commonly used in net-
works and would be lost with contrast alone.

3. Overview of Attribution Methods

Here we provide a brief formal description of our set-
ting and attribution methods. We consider an input as
a vector x ∈ I, in our setting, the input is typically
an image of height H , width W and d channels, so
I = RH×W×d. We describe a model as a function S :
I → RC , where C is the number of classes in the classi-
fication problem. The final classification is usually per-
formed as an argmax over S(x). An attribution method
provides a saliency map H : I × S × {1, ..., C} → I ′

that for an input, a model, and optionally a target class
provides an explanation of the same shape as the input,
attributing scores to each feature i in the input describ-
ing in how far S uses xi for the classification (or tar-
get class). With a slight abuse of notation, we use Hc
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Figure 2. VAR is generally applicable. We show VAR augmenting different attribution methods (columns) and architectures (rows)
for detecting zebras (left) resp. bisons (right) in the original image (middle), using Gradient Backpropagation (GPB), Integrated
Gradients (IG), and GradCAM, for respectively ResNet50 and ViT.

to denote both the explanation method and the resulting
attribution map for class c. We next describe specific
instantiations of H.

The gradient explanation for an input x is
Hgrad(x, S, c) =

∂Sc

∂x [4, 10, 34]. The gradient quantifies
how much a small change in each input feature would
affect the predictions Sc(x).

Input×Gradient (IxG) addresses “gradient satura-
tion” in the standard gradient explanation through the
element-wise product of the input and the gradient, de-
noted x ⊙ ∂Sc

∂x , which can reduce visual diffusion and
highlight important features more effectively [32].

Integrated Gradients (IG) also addresses gradient
saturation by integrating gradients along a path from a
baseline to the input [37]. IG for an input x is defined as
HIG(x, S, c) = (x − x̄) ×

∫ 1

0
∂Sc(x̄+α(x−x̄))

∂x dα, where
x̄ is a “baseline input” that represents the absence of a
feature in the original input x.

Guided Backpropagation (GBP) [36] modifies
standard backpropagation by introducing a non-negative
constraint on gradients. As such, GBP prevents negative
gradients from propagating. HGBP adjust the backprop-
agation for ReLu layers to δlGBP = δl+1 ·1δl+1>0 ·1xl>0

and for non-ReLU layers to δlGBP = δl+1 · 1δl+1>0,
where 1 is the indicator function. This filtering ensures
that only signals that positively contribute to a classifi-
cation is propagated.

GradCAM [31] computes class-specific attribution
maps using the feature maps from the last convolutional
layer. For a feature map Ak of the last convolutional
layer, the attribution is defined as HGradCAM(x, S, c) =
ReLU(

∑
k α

k
cA

k), where αk
c = 1

Z

∑
i

∑
j

∂Sc

∂Ak
ij

are the
importance weights computed by global average pooling
of the gradients.

Guided GradCAM combines GBP and GradCAM
i.e. the element-wise product HGuidedGradCAM(x, S, c) =

HGBP(x, S, c)⊙HGradCAM(x, S, c), combining the local-
ization capability of GradCAM with the fine-grained de-
tails of Guided Backpropagation.

SmoothGrad (SG) [35] seeks to alleviate noise and
visual diffusion [32, 37] for saliency maps by averag-
ing over explanations of noisy copies of an input. For
a given explanation map H, SmoothGrad is defined as
Hsg(x, S, c) = 1

N

∑N
i=1 H(x + gi, S, c), where noise

vectors gi ∼ N (0, σ2) are drawn i.i.d. from a normal
distribution.

4. The VAR framework

Post-hoc attribution methods have been shown to per-
form poorly in recovering the classification-relevant in-
formation from the network [7, 27] and arguably fail net-
work perturbation based sanity checks [1]. This, how-
ever, means that the explanations obtained through these
attribution methods are not suited for the typical applica-
tion scenario, which is usually understanding what infor-
mation in the input was relevant for a classification. In
the following, we propose VAR for Visualizing Actually
Relevant features. VAR is a general approach to refining
saliency maps by considering attributions across classes
to reveal information that is specifically relevant for dis-
tinguishing classes. By design, VAR is a framework that
fits any attribution method that depend on the gradient
of the network output with respect to input, ∂Sc

∂x .
To elucidate the class-relevant information contained

in a set of attribution maps {Hk|k ∈ K ⊆ {1, ..., C}},
we propose to compute the relative importance at each
spatial location, here a pixel, between classes using soft-
max, analogous to how the final classification treats the
different logits through softmax.1

1Attribution methods for outputs are usually applied to logits, as
numerical issues caused by the flatness of the softmax function at the
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In particular, we propose the following three-step
procedure to turn any attribution method H : I × S ×
{1, ..., C} → I into an attribution method revealing
class-relevant features CH : I × S × K → Id, where
K ⊆ {1, ..., C}.

Class-relevant Attributions
Step 1: Initial Attribution. First, we compute attribu-
tion maps for each class c ∈ K as

Hc = H(x, S, c) ,

where x is the input, S is the model, and Hc is any attri-
bution map for class c.
Step 2: Spatial Softmax. To achieve attributions re-
vealing the most class-relevant features, we calculate a
softmax across classes for each pixel position (i, j) as

Mc(i, j) =
eĤc(i,j)/t∑

k∈K eĤk(i,j)/t
,

where t = 0.1 is the temperature. This produces an at-
tribution Mc that emphasizes pixels where class c has
higher attribution compared to most other classes, re-
covering distinguishing but also locally shared features.
Step 3: Class-relevant Attribution. The final attribu-
tion for class c is then computed as

CHc = Ĥc ⊙Mc ⊙ 1Mc− 1
|K|>τ ,

where ⊙ denotes element-wise multiplication, 1 is the
indicator function, 1

|K| represents the uniform probabil-
ity (chance level) across |K| classes, and τ (set to 0.01
in our experiments) is a threshold parameter. The indi-
cator function creates a binary mask that preserves only
those pixels where the softmax probability Mc exceeds
the uniform probability by at least τ , effectively filtering
out pixels that show only minimal preference for class c
compared to other classes.

The resulting class-relevant attribution CH : I ×
S × K → I |K| produces attribution maps that high-
light features important for each of the selected classes
while suppressing features that are common across most
classes and hence not important for the decision of the
network. Note that it is still possible to detect features
that are shared and used between multiple classes (see
Fig. 1), as long as they provide enough information to
the network. Still detecting those shared features is not
possible for methods that subtract feature maps or adjust
the backpropagation rules for LRP.

(important) regions hinder using it directly as a target.

Selecting the Set of Classes
Having defined our class-relevant attribution operator
CH, an important consideration is the selection of the
set of classes K used for calculation.

We explore three approaches for class selection, each
offering distinct advantages depending on the specific
analysis goals and application context.

Predefined Class Sets. The canonical approach is to
use a predefined set of classes K that are of particular
interest. This is especially useful in contexts where spe-
cific class comparisons have natural interpretations. For
example, in a grid-pointing game where users must iden-
tify the quadrant containing a particular object, the four
quadrant classes directly correspond to the task struc-
ture. Similarly, in medical applications, contrasting dis-
ease subtypes can highlight discriminative features that
aid differential diagnosis. This approach ensures that
the resulting attributions focus on distinctions that are
meaningful to the particular application domain. How-
ever, this approach requires specific knowledge about
the task, which is often not available. The following ap-
proaches are data- and model-driven and, hence, do not
require prior knowledge to select classes.

Top-k Most Probable Classes. A model depen-
dent approach to class selection involves choosing the k
classes with highest predicted probabilities and the class
with the lowest probability for a given input. This ap-
proach is particularly effective for highlighting the fea-
tures that distinguish between the most plausible clas-
sifications for a given input, but also reveal informa-
tion that is shared between highly related classes that
are likely among the highest probabilities. As these
classes represent the top candidates for the final clas-
sification, contrasting their attribution maps reveals the
most decision-relevant features.

Best–vs–Worst Classes. The third approach com-
pares the highest-probability class against the lowest-
probability class: K = {cmax, cmin} where cmax =
argmaxc Sc(x) and cmin = argminc Sc(x). Such ex-
treme can surprisingly reveal the most distinctive char-
acteristics of the input as interpreted by the model, by
showing which features are most critical for pushing the
model toward or away from certain classifications.

5. Experiments
We evaluate VAR in three benchmark settings: ability to
localize, insertion tests, and randomization-based san-
ity checks in combination with 5 different attribution
methods. To assess localization ability, we consider the
validation set of ImageNet [30], MS-COCO [19], and
the Grid Pointing Game on ImageNet [27]. We as-
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sess the quality of attributions by measuring how well
these match annotated bounding boxes and segmenta-
tion masks.

For insertion tests, we quantitatively evaluate attri-
butions using standard perturbation testing, which mea-
sures the importance of pixels. We employ the insertion
method following the approaches of XRAI [17], which
allows for systematic evaluation of how the addition of
information impacts model confidence. Given the com-
putational complexity, we use the first 1k. To validate
robustness, we conduct sanity checks using randomiza-
tion tests on 10k images on ImageNet [1].

We evaluate VAR on various architectures, includ-
ing ResNet-50 [14], Vision Transformer B/16 (ViT) [9],
and provide further results for VGG-16 [33], DenseNet-
121 [15], Wide ResNet-50-2 [40], and ConvNeXt [21]
in the Appendix. We consider models pre-trained on
ImageNet, downloaded from PyTorch, and use these in
their standard classification configuration. As attribu-
tion methods, we consider the most widely used model-
agnostic attribution methods that can be readily applied
to the above architectures. These include Gradient-
weighted Class Activation Mapping (Grad-CAM) [31],
Guided Backpropagation (GBP) [36], Integrated Gra-
dients (IG) [37] with 50 steps and a blurred baseline,
Input×Gradient (IxG) [32], and Guided Grad-CAM
(Guided GC) [31]. For all methods we use Captum [18].

5.1. Localization
Metrics For our localization metrics, we assess attri-
bution quality by measuring how well the attribution
maps align with the actual object regions. The Region
Attribution (RA) metric quantifies what portion of the
total attribution weight falls within the target region,
providing insight into attribution focus. The Intersection
over Union (IoU) measures the spatial overlap between
the attribution map and the ground truth region. Preci-
sion evaluates attribution specificity by calculating what
fraction of the highlighted area corresponds to the target
object, while Recall determines what proportion of the
target region receives attribution. We also report the F1-
score. Before evaluation, to prevent methods from being
unduly rewarded for producing diffuse attributions, we
apply a Gaussian blur to the attribution maps and so en-
sure a fair comparison across different approaches [28].
For both setups we use the target classes for CH. We
give further details in Appendix 7.1.

Grid Pointing For the grid-pointing game, we com-
pile a 2 × 2 grid of random images from ImageNet val-
idation set, which we call Quad-ImageNet. This gives

us 12500 images. On VAR shows to greatly improve
localization performance of all attribution methods (see
Tab. 1). For ResNet50, we observe substantial gains in
RA, with improvements ranging from +0.16 to +0.54
across different methods, and an average increase of
+0.24. GradCAM with VAR shows a particularly strong
performance, achieving an RA of 0.92 and F1 score of
0.81, along with an IoU improvement from 0.41 to 0.71.
In terms of Precision, VAR improves the base methods
with an average increase of +0.31 for ResNet50. This
indicates that VAR produces more focused attribution
maps that align better with the target object regions,
which are also visually evident in Figure 3. We further
observe that our framework is not only able to improve
localization in terms of capturing the distinguishing fea-
tures but is also able to recover the common features of
closely related classes (cf. Fig. 3 second row). In par-
ticular, both GBP and Guided GC see strong precision
improvements when enhanced with VAR (from 0.25 to
0.83 and from 0.39 to 0.84, respectively).

The decrease in recall with VAR (average -0.09)
is explained by the ground truth encompassing entire
quadrants, inherently favoring methods that highlight
whole regions. While standard methods spread acti-
vation broadly, VAR focuses specifically on discrimi-
native features that distinguish objects from others in
the image. This targeted approach covers a smaller
portion of the quadrant (lower recall) but identifies
the most classification-relevant features (higher preci-
sion). The improved F1 scores confirm this precision-
focused behavior is more valuable for practical appli-
cations than indiscriminately highlighting entire object
regions. For the ViT architecture, we observe a sim-
ilar pattern of improvements, though the magnitude is
generally more modest. RA still shows consistent gains
(average +0.12), while precision improvements are more
moderate (+0.08 on average). The effect on IoU is min-
imal, and F1 scores show a slight decrease for some
methods, suggesting that for transformers, the precision-
recall trade-off is more balanced.

These results show that VAR enhances popular at-
tribution methods in precisely localizing those features
most relevant to classification. For these methods, the
effect of VAR is strongest on convolutional architec-
tures; likely since these methods are not tailored to ViT.

MS-COCO For MS-COCO, we use the whole valida-
tion set. We filter objects that are smaller than 1% of the
image and objects for which the model has a confidence
less than 10−4. In MS-COCO, VAR also improves lo-
calization performance, though the gains are more mod-
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Quad-ImageNet COCO

Method RA IoU Prec. Recall F1 RA IoU Prec. Recall F1
R

es
N

et
50

GradCAM 0.72 0.41 0.42 0.98 0.57 0.15 0.09 0.09 1.00 0.15
w/ VAR 0.91 0.71 0.81 0.86 0.81 0.18 0.11 0.12 0.76 0.17

Guided Backprop 0.35 0.20 0.25 0.47 0.32 0.15 0.09 0.09 1.00 0.15
w/ VAR 0.89 0.31 0.83 0.33 0.46 0.22 0.12 0.17 0.45 0.18

Guided-GradCAM 0.75 0.26 0.39 0.45 0.41 0.20 0.09 0.09 0.99 0.15
w/ VAR 0.92 0.28 0.84 0.29 0.42 0.26 0.13 0.20 0.42 0.20

Input×Gradient 0.40 0.20 0.25 0.50 0.33 0.12 0.09 0.09 1.0 0.15
w/ VAR 0.56 0.22 0.29 0.49 0.36 0.14 0.09 0.09 0.99 0.15

Integrated Gradient 0.42 0.21 0.26 0.51 0.34 0.13 0.09 0.09 1.00 0.15
w/ VAR 0.58 0.22 0.28 0.50 0.36 0.15 0.09 0.09 1.00 0.15

avg. change 0.24 0.13 0.31 -0.09 0.11 0.04 0.02 0.04 -0.12 0.02

Table 1. VAR improves a wide range of methods and scores. We show the quality of the attention maps of vanilla GradCAM, Guided
Backpropagation, Guided-GradCAM , Input×Gradient, and Integrated Gradient, and augmented with VAR, measured using Region
Attribution (RA), Intersection over Union (IoU), Precision, Recall, and F1. We see that by cleaning up the attention maps, Recall
drops slightly, but all other metrics improve.

Integrated Gradients Guided Backprop Input×Gradient

Figure 3. VAR on the Grid Pointing Game. We show examples from the grid pointing game for methods most affected by our
framework (as columns: Integrated Gradient, Guided Backpropagation, Input×Gradient) for ResNet50. Input Images are given on
the left, for each we provide vanilla attribution methods (top row) and augmented with VAR (bottom row). For each, we show the
attribution for the four different classes in the grid as columns.
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SIC AIC

Method ResNet50 ViT ResNet50 ViT

GradCAM 0.73 0.54 0.76 0.56
w/ VAR 0.74 0.51 0.78 0.52

Guided Backprop 0.63 0.46 0.68 0.48
w/ VAR 0.65 0.46 0.70 0.48

Guided-GradCAM 0.69 0.58 0.73 0.62
w/ VAR 0.7 0.52 0.74 0.54

Input×Gradient 0.52 0.56 0.56 0.59
w/ VAR 0.53 0.51 0.57 0.53

Integrated Gradient 0.56 0.55 0.60 0.57
w/ VAR 0.57 0.55 0.61 0.57

Table 2. AIC and SIC scores for various attribution methods
across different models, higher is better. While our method
improves performance in some cases, it can also lead to lower
scores due to its focus on discriminative features rather than
the entire object.

est compared to Quad-ImageNet. Across all methods,
we observe consistent improvements in Region Attribu-
tion (average +0.04), IoU (average +0.02), and precision
(average +0.04). GradCAM and Guided GC with VAR
show the strongest improvements, with RA increasing
from 0.15 to 0.18 and 0.20 to 0.26 respectively. While
recall decreases (average -0.12), this reflects VAR’s fo-
cus on discriminative features rather than entire object
regions. COCO’s natural images contain multiple ob-
jects with complex backgrounds, making precise local-
ization more challenging, yet VAR still manages to im-
prove F1 scores across most methods on both ResNet50
and ViT, indicating better overall localization despite the
more challenging context.

5.2. Insertion ablations
Following the benchmark evaluation scheme for
saliency maps of Kapishnikov et al. [17], measuring
how effectively an attribution method identifies the rel-
evant image regions for a model’s decision. We fol-
low the Performance Information Curve (PIC) frame-
work, where we start with a blurred image, progressively
restoring high-attribution pixels, measuring model con-
fidence, and when the model returns to its initial pre-
diction. This process produces Performance Informa-
tion Curves that track how classification performance
evolves as information is reintroduced.

To quantify overall performance, we report the Area
under Accuracy Information Curve (AIC) and Softmax
Information Curve (SIC), which summarizes accuracy
across different information levels. We evaluate on Im-
ageNet and report results in Table 2. We observe that
our method improves scores for ResNet50 but provides
similar or slightly decreased scores as the vanilla ap-
proaches on ViTs. These small differences in scores

could be explained by methods + VAR highlighting
discriminative features rather than uniformly attribut-
ing importance across the object. For example, in an
image of a cup, our method emphasizes the handle as
a key distinguishing feature rather than the entire cup
(cf. Appx. Fig. 6). While this better reflects the
model’s decision-making, insertion tests favor methods
that highlight all class-relevant pixels rather than indi-
cating its class-specific features. In fact, we observe that
VAR attributions, in contrast to the baselines, capture the
specific class-relevant features, with ablated images (cf.
Fig. 4) changing the output distribution without destroy-
ing all the information in the image, but rather surgically
removing the information. For example for the porcu-
pine, by removing the features of the one class we can
change the prediction for the other class. While for the
Cougar, we remove a very distinctive feature, namely the
ear, which increases the uncertainty, showing that these
features are crucial for the model.

5.3. Sanity Checks
To verify that attribution methods meaningfully reflect
representation the model learned, we conduct cascading
randomization tests following [1]. These tests progres-
sively randomize model parameters from output to input
layers, measuring how attribution maps change as model
knowledge is systematically destroyed. We follow the
same procedure as in the original paper. We measure
the spearman correlation (Fig. 5), cosine similarity, and
Pearson correlation (Appx. Fig. 7) between attributions
before and after randomization. As the later parts of the
network is randomized, ideally there is little information
left about the target in the attribution maps. However, as
discussed by Binder et al. [5], this randomization-based
approach has shortcomings as it ”preserves scales of for-
ward pass activations with high probability”. Hence, we
are primarily interested in the relative change between
attributions of our framework and the respective original
version, but we cannot compare the sanity-check results
between different attribution methods.

We find that attribution maps + VAR give better re-
sults on the sanity checks, for all baseline methods and
across randomization percentages (see Figure 5). For
Guided-Backprop and Input × Gradient, the improve-
ment is most pronounced, as well as for randomizing the
latest layers, which carry most of the conceptual mean-
ing for the classification.

6. Discussion & Conclusion
We presented VAR, a framework to enhance any attri-
bution method in a plug-and-play manner to obtain bet-
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Figure 4. Ablation study. For GBP (top) and GBP with VAR (bottom) we provide three examples from the insertion/deletion
ablation. For each example, we show the original image with associated class softmax scores for two classes associated with image
features, the attribution map for each of the classes, and the attribution-based intervention mask on each of the classes with resulting
changes in class softmax scores.
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Figure 5. Sanity check by network randomization. We show
similarity between attributions before and after randomiza-
tion of x% of network layers (ResNet50) for vanilla attribu-
tion methods (dashed) and when augmented with VAR (solid).
Lower is better. Randomization is from back to front of the
network following the strategy of Adebayo et al. [1].

ter class-specific saliency maps. VAR does not require
any modification to the model or method by using a
class-specific approach between attributions of classes
to obtain attribution maps that are object- and instance-
specific, reveal discriminative features for a class, but is
also able to recover features that are shared for predic-
tion of related classes.

To substantiate these claims, we provided extensive
evaluation across five different attribution methods, con-
volutional as well transformer-based architectures, and
different benchmarks for saliency maps, including the
grid pointing game [27], sanity checks for saliency
maps [1], and insertion tests [17].

Here, VAR showed to enhance standard attribution
maps in terms of correct object localization. This comes
at the cost of a bit of recall, a trade-off of methods aug-
mented with VAR focusing on discriminative features
rather than entire object regions, which is desirable for
understanding but unfavorable for this particular met-
ric. Attributions + VAR also showed to be capturing
more important features for the model prediction, evi-
dent from the insertion deletion ablation, and are more
robust to randomization sanity checks than their vanilla
counterparts. While widely considered a good bench-
mark, the sanity checks has to be taken with a grain
of salt when looking at absolute scores [5], hence we
here focus on only interpreting relative differences of the
same methodological approach to attributions.

Our evaluation of interpretability is by no means ex-
haustive, as a wide array of different benchmarks and
metrics has been proposed over time. Instead, we here
focused on the most common and widely employed eval-
uation protocols that are established in the literature. We

8



anticipate that our framework can be used as a general
purpose tool to understand the distinguishing features a
model uses for prediction.
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Supplementary Material

7. Evaluation Metrics

In our experimental setup, we evaluate attribution meth-
ods across several metrics to assess their efficacy in
highlighting relevant features for model predictions. We
define an input as a vector x ∈ Rd, and a model as a
function S : Rd → RC , where C is the number of
classes in the classification problem. The final clas-
sification is performed via an argmax over S(x). An
explanation method provides an explanation map H :
Rd ×S ×{1, ..., C} → Rd that maps an input, a model,
and optionally a target class to an attribution map of the
same shape as the input.

7.1. Localization metrics
We evaluate attribution methods using two datasets: a
Grid Pointing Game based on ImageNet and COCO
dataset with segmentation masks. For both evaluations,
we apply the same set of metrics, treating both bounding
boxes and segmentation masks as regions of interest R
in the image. We match the region of interest with the
correct attribution map Hc i.e. for the first quadrant we
also take the first attribution map. We only take the pos-
itive part of Hc. Before evaluation, we apply a Gaussian
blur with a kernel size of 11×11 to the attribution maps:

H̃c = Gσ ∗ Hc

where Gσ is a Gaussian kernel with standard devia-
tion σ and ∗ denotes the convolution operation. This pre-
processing step prevents methods from being unduly re-
warded for producing diffuse attribution maps. We then
compute the following metrics:

7.1.1. Region Attribution
This metric quantifies what fraction of the total positive
attribution falls within the region of interest:

RA =

∑
i∈R H̃c(i)∑
i H̃c(i)

7.1.2. Intersection over Union (IoU)
We compute the overlap between the attribution map and
the region of interest:

IoU =
|(H̃c ∩R|
|H̃c ∪R|

Method ResNet50 ViT VGG16 WRN50-2 DenseNet121 ConvNeXT

IG 0.56 0.55 0.55 0.57 0.55 0.47
w/ VAR 0.57 0.55 0.54 0.57 0.56 0.47

GBP 0.63 0.46 0.56 0.64 0.62 0.46
w/ VAR 0.65 0.46 0.57 0.66 0.64 0.44

IxG 0.52 0.56 0.51 0.53 0.51 0.46
w/ VAR 0.53 0.51 0.51 0.53 0.51 0.44

Guide-GC 0.69 0.58 0.54 0.69 0.65 0.62
w/ VAR 0.7 0.52 0.54 0.7 0.62 0.51

GradCam 0.73 0.54 0.52 0.72 0.64 0.65
w/ VAR 0.74 0.51 0.52 0.72 0.62 0.64

Table 3. SIC scores for the remaining architectures.

Method ResNet50 ViT VGG16 WRN50-2 DenseNet121 ConvNeXT

IG 0.6 0.57 0.58 0.61 0.61 0.64
w/ VAR 0.61 0.57 0.58 0.62 0.61 0.64

GBP 0.68 0.48 0.59 0.7 0.67 0.62
w/ VAR 0.7 0.48 0.59 0.71 0.7 0.52

IxG 0.56 0.59 0.54 0.57 0.57 0.61
w/ VAR 0.57 0.53 0.55 0.57 0.57 0.53

Guide-GC 0.73 0.62 0.57 0.74 0.7 0.81
w/ VAR 0.74 0.54 0.57 0.74 0.66 0.53

GradCam 0.76 0.56 0.54 0.77 0.69 0.85
w/ VAR 0.78 0.52 0.54 0.77 0.67 0.84

Table 4. AIC scores for the remaining architectures.

7.1.3. Precision and Recall

Precision =
|H̃c ∩R|
|H̃c|

Recall =
|H̃c ∩R|

|R|

7.1.4. F1 Score

F1 =
2 · Precision · Recall
Precision + Recall

8. Additional Resulst
8.1. Localization
We provide additional results of all the architectures
mention in the Experiment section in Table 5. The trend
remains the same for all architectures and methods; if
they are augmented using VAR they improve the local-
ization metrics and trade-off recall. Additionally we
provide similar to Figure 3 plots for all other architec-
tures in Figure 13-18.

8.2. Insertion test
We provide additional results for insertion tests in Table
3 and in Table 4. These results paint a similar picture to
what we described in the section above.
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Figure 6. VAR highlights discriminative features. Standard
Guided Backpropagation (GBP) produces nearly identical at-
tributions for both ”coffee mug” and ”beer glass” classes (top
row), while our approach (bottom row) clearly emphasizes the
distinguishing features of each class—the handle for coffee
mug and the cup shape for beer glass. This focus on discrim-
inative features aids interpretability but can result in lower in-
sertion test scores which reward highlighting the entire object.

8.3. Sanity Checks
We show the sanity check plots for the all the other ar-
chitectures in Figure 7-12.
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Quad-ImageNet COCO

Method RA IoU Prec. Recall F1 RA IoU Prec. Recall F1

V
iT

GradCAM 0.40 0.26 0.30 0.80 0.40 0.18 0.10 0.10 0.97 0.16
w/ VAR 0.43 0.23 0.39 0.42 0.34 0.21 0.11 0.16 0.51 0.17

GBP 0.27 0.20 0.25 0.50 0.33 0.09 0.10 0.10 1.00 0.15
w/ VAR 0.54 0.20 0.32 0.42 0.32 0.14 0.09 0.11 0.77 0.15

Guided-GradCAM 0.38 0.20 0.27 0.48 0.34 0.17 0.10 0.10 0.98 0.16
w/ VAR 0.49 0.19 0.38 0.32 0.31 0.21 0.12 0.16 0.56 0.19

Input×Gradient 0.33 0.20 0.25 0.5 0.33 0.10 0.10 0.10 1.00 0.15
w/ VAR 0.45 0.20 0.30 0.41 0.33 0.16 0.10 0.12 0.79 0.16

IG 0.36 0.20 0.25 0.51 0.34 0.12 0.10 0.10 1.00 0.15
w/ VAR 0.50 0.21 0.29 0.44 0.34 0.14 0.10 0.10 0.98 0.16

D
en

se
N

et
12

1

GradCam 0.52 0.35 0.39 0.84 0.50 0.12 0.09 0.10 0.85 0.15
+ VAR 0.55 0.34 0.51 0.49 0.44 0.10 0.07 0.08 0.43 0.11
GBP 0.33 0.20 0.25 0.47 0.33 0.14 0.09 0.09 1.00 0.15
+ VAR 0.86 0.33 0.74 0.39 0.49 0.21 0.13 0.15 0.59 0.19
Guide-GC 0.56 0.23 0.37 0.40 0.37 0.17 0.09 0.10 0.79 0.14
+ VAR 0.60 0.12 0.58 0.12 0.19 0.15 0.06 0.13 0.21 0.10
IxG 0.35 0.20 0.25 0.50 0.33 0.12 0.09 0.09 1.00 0.15
+ VAR 0.47 0.21 0.27 0.49 0.35 0.14 0.09 0.09 0.99 0.15
IG 0.37 0.20 0.25 0.51 0.34 0.12 0.09 0.09 1.00 0.15
+ VAR 0.51 0.21 0.27 0.50 0.35 0.15 0.09 0.09 1.00 0.15

C
on

vN
ex

t

GradCam 0.96 0.79 0.85 0.91 0.87 0.24 0.13 0.13 0.91 0.19
+ VAR 0.98 0.72 0.94 0.75 0.82 0.26 0.14 0.16 0.70 0.22
GBP 0.41 0.20 0.25 0.50 0.33 0.13 0.09 0.09 1.00 0.15
+ VAR 0.59 0.24 0.42 0.35 0.37 0.17 0.09 0.10 0.91 0.15
Guide-GC 0.95 0.34 0.65 0.43 0.51 0.30 0.14 0.16 0.80 0.22
+ VAR 0.97 0.19 0.96 0.19 0.31 0.33 0.14 0.26 0.39 0.22
IxG 0.40 0.20 0.25 0.50 0.33 0.13 0.09 0.09 1.00 0.15
+ VAR 0.56 0.23 0.40 0.35 0.36 0.17 0.10 0.10 0.92 0.16
IG 0.47 0.21 0.26 0.52 0.34 0.13 0.09 0.09 1.00 0.15
+ VAR 0.67 0.27 0.37 0.50 0.42 0.16 0.09 0.09 0.99 0.15

V
G

G
16

GradCam 0.67 0.43 0.50 0.79 0.59 0.16 0.10 0.12 0.57 0.16
+ VAR 0.77 0.33 0.71 0.40 0.45 0.15 0.08 0.13 0.27 0.12
GBP 0.27 0.20 0.25 0.47 0.33 0.14 0.10 0.10 1.00 0.16
+ VAR 0.48 0.14 0.40 0.20 0.22 0.16 0.09 0.12 0.44 0.13
Guide-GC 0.68 0.26 0.44 0.41 0.41 0.20 0.09 0.13 0.50 0.15
+ VAR 0.72 0.08 0.71 0.09 0.14 0.20 0.06 0.18 0.12 0.09
IxG 0.32 0.20 0.25 0.50 0.33 0.13 0.10 0.10 1.00 0.16
+ VAR 0.41 0.20 0.28 0.45 0.34 0.15 0.10 0.10 0.99 0.16
IG 0.35 0.21 0.26 0.51 0.34 0.14 0.10 0.10 1.00 0.16
+ VAR 0.47 0.21 0.28 0.47 0.35 0.17 0.10 0.10 0.99 0.16

W
id

eR
es

N
et

-5
0-

2

GradCam 0.74 0.42 0.42 0.97 0.58 0.15 0.10 0.10 0.99 0.15
+ VAR 0.91 0.71 0.82 0.86 0.81 0.18 0.11 0.12 0.77 0.17
GBP 0.42 0.20 0.25 0.47 0.32 0.16 0.10 0.10 1.00 0.15
+ VAR 0.90 0.35 0.80 0.39 0.51 0.23 0.12 0.16 0.53 0.18
Guide-GC 0.79 0.26 0.39 0.45 0.41 0.21 0.10 0.10 0.98 0.16
+ VAR 0.92 0.30 0.83 0.32 0.45 0.27 0.13 0.20 0.47 0.20
IxG 0.45 0.20 0.25 0.50 0.33 0.13 0.10 0.10 1.00 0.15
+ VAR 0.64 0.24 0.32 0.49 0.38 0.16 0.10 0.10 0.99 0.16
IG 0.45 0.21 0.26 0.51 0.34 0.14 0.10 0.10 1.00 0.15
+ VAR 0.65 0.23 0.30 0.50 0.38 0.17 0.10 0.10 1.00 0.16

Table 5. VAR improves a wide range of methods and scores. We bold numbers where the relative improvements is either below
or above 1 rounded to the second decimal. For ViT, we show the quality of the attention maps of vanilla GradCAM, Guided
Backpropagation, Guided GradCAM, Input x Gradient, and Integrated Gradients, and augmented with VAR, measured using Region
Attribution (RA), Intersection over Union (IoU), Precision, Recall, and F1. We see that by cleaning up the attention maps, Recall
drops slightly, but all other metrics improve.
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Figure 7. ResNet50: VAR improves all base methods under randomization [Lower is better]. For all methods and for varying level
of randomization, we measure the similarity between the attention map for the unperturbed network and the randomized network.
Dashed lines are base methods, solid lines when augmenting with VAR, which improve the corresponding baseline method.
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Figure 8. DenseNet121: VAR improves all base methods under randomization [Lower is better]. For all methods and for varying
level of randomization, we measure the similarity between the attention map for the unperturbed network and the randomized
network. Dashed lines are base methods, solid lines when augmenting with VAR, which always improve the corresponding baseline
method.
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Figure 9. WRN50-2: VAR improves all base methods under randomization [Lower is better]. For all methods and for varying level
of randomization, we measure the similarity between the attention map for the unperturbed network and the randomized network.
Dashed lines are base methods, solid lines when augmenting with VAR, which always improve the corresponding baseline method.
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Figure 10. VGG16: VAR improves all base methods under randomization [Lower is better]. For all methods and for varying level
of randomization, we measure the similarity between the attention map for the unperturbed network and the randomized network.
Dashed lines are base methods, solid lines when augmenting with VAR, which improve the corresponding baseline method.
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Figure 11. ConvNext: VAR improves all base methods under randomization [Lower is better]. For all methods and for varying level
of randomization, we measure the similarity between the attention map for the unperturbed network and the randomized network.
Dashed lines are base methods, solid lines when augmenting with VAR, which improve the corresponding baseline method.
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Figure 12. ViT: VAR improves all base methods under randomization [Lower is better]. For all methods and for varying level
of randomization, we measure the similarity between the attention map for the unperturbed network and the randomized network.
Dashed lines are base methods, solid lines when augmenting with VAR, which improve the corresponding baseline method.
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Figure 13. ResNet50: VAR on the Grid Pointing Game. We show examples from the grid pointing game for methods most affected
by our framework (as columns: Integrated Gradient, Guided Backpropagation, Input×Gradient). Input Images are given on the
left, for each we provide vanilla attribution methods (top row) and augmented with VAR (bottom row). For each, we show the
attribution for the four different classes in the grid as columns.
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Figure 14. DenseNet121: VAR on the Grid Pointing Game. We show examples from the grid pointing game for methods most
affected by our framework (as columns: Integrated Gradient, Guided Backpropagation, Input×Gradient). Input Images are given
on the left, for each we provide vanilla attribution methods (top row) and augmented with VAR (bottom row). For each, we show
the attribution for the four different classes in the grid as columns.
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Figure 15. WideResNet50-2: VAR on the Grid Pointing Game. We show examples from the grid pointing game for methods most
affected by our framework (as columns: Integrated Gradient, Guided Backpropagation, Input×Gradient). Input Images are given
on the left, for each we provide vanilla attribution methods (top row) and augmented with VAR (bottom row). For each, we show
the attribution for the four different classes in the grid as columns.
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Figure 16. VGG16: VAR on the Grid Pointing Game. We show examples from the grid pointing game for methods most affected
by our framework (as columns: Integrated Gradient, Guided Backpropagation, Input×Gradient). Input Images are given on the
left, for each we provide vanilla attribution methods (top row) and augmented with VAR (bottom row). For each, we show the
attribution for the four different classes in the grid as columns.
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Figure 17. ConvNeXt: VAR on the Grid Pointing Game. We show examples from the grid pointing game for methods most affected
by our framework (as columns: Integrated Gradient, Guided Backpropagation, Input×Gradient). Input Images are given on the
left, for each we provide vanilla attribution methods (top row) and augmented with VAR (bottom row). For each, we show the
attribution for the four different classes in the grid as columns.
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Figure 18. ViT: VAR on the Grid Pointing Game. We show examples from the grid pointing game for methods most affected by our
framework (as columns: Integrated Gradient, Guided Backpropagation, Input×Gradient). Input Images are given on the left, for
each we provide vanilla attribution methods (top row) and augmented with VAR (bottom row). For each, we show the attribution
for the four different classes in the grid as columns.
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